6. THE WESTERN CEMETERY

EXCAVATION AND WATCHING BRIEF ALONG OLD TETBURY ROAD, 2004–6
by Neil Holbrook, E.R. McSloy and Derek Evans

Introduction

Between 2004 and 2006 CA carried out two separate investigations along Old Tetbury Road which encountered burials within the western cemetery of the Roman town. In June and July 2004 a small excavation was undertaken to discharge a condition of planning permission for a small residential development 360m outside of the Roman town defences (see Fig. 17, no. 12 and Fig. 68). This site is referred to in this report as Old Tetbury Road. Between October 2004 and January 2006 a watching brief was conducted during groundworks associated with the construction of a new leisure centre on the site of the former cattle market which was 100m nearer the defences. This is referred to as the Former Cattle Market site (Fig. 17, no. 11). Both sites lay immediately south-east of Old Tetbury Road, which probably follows the original alignment of the Fosse Way as it approached the town from the south-west (the course found further to the south appears to be a later Roman re-alignment; CE II, 49; CE V, 14–15). The numbering of burials in this report commences with 1142 so as to continue the sequence for burials to the west of the town started in CE II, 205, MF5 A03–C01. The catalogue number is prefixed by the letter B for inhumation burials and by the letter C for cremations. Deposits of pyre debris which include a small quantity of cremated bone are not designated a burial number as it is assumed that the bulk of the cremated bone was interred elsewhere.

Old Tetbury Road

Introduction

The archaeological potential of this site had been demonstrated by an evaluation undertaken by Gloucestershire County Council Archaeology Service in April 2001, prior to the granting of planning permission, which found two truncated cremation burials (Derham 2001). The site lay adjacent to a lodge at the entrance to the former grounds of Querns House, a large ornamental villa built in 1826 on previously vacant land. The grounds of Querns House extended as far as Old Tetbury Road where remnants of the perimeter wall of the estate still survive (CE II, 29–30). Querns House itself now forms one of the buildings of Cirencester Hospital.

The project was initially conceived as a watching brief during the machine excavation of the foundations for the new houses. As archaeological deposits were encountered, however, it became apparent that an excavation would be a more appropriate mitigation strategy, and two discrete areas were examined (Fig. 68). Area A comprised the main development site, and Area B a bus turning area. A modern service trench running along the north-eastern edge of Area A had destroyed all archaeological deposits in this area. Topsoil was removed from both areas by a mechanical excavator to the top of archaeologically significant deposits, sampling of features continuing by hand excavation thereafter.

Topography and geology

The site lies on ground which rises gently to the west. The height of the natural substrate rose from 99m AOD in Area A to 102m AOD in Area B. The land also falls away slightly to the south into a former valley whose line is now largely followed by the A419 Bristol Road (Fig. 68). The natural substrate was highly variable across Area A consisting of a mixture of limestone brash and firm grey clay, dark silty clays and brown clayey sand. The derivation and interpretation of the silty clays are problematical. They do not occur consistently across the site, but in places can be up to 0.65m deep where they appear to be infilling natural undulations in the brash. The clays are totally devoid of artefacts and are cut by Roman features, and are therefore of a different period to the alluvial clays found in Area B and elsewhere which overlay Roman deposits (see below).

Area A

Period 1: Roman (1st to 2nd century + AD)

The Roman activity has been subdivided into four separate phases based upon stratigraphic relationships (Fig. 69).

Phases 1 and 2: Land division

The earliest deposit encountered was a 0.1m-thick clayey occupation spread containing domestic waste (125) in the north-eastern corner of the site. This was
superseded by two gullies (collectively termed boundary A). One was laid out at right-angles to Old Tetbury Road and continued beyond the limits of the site to the south-east. A second gully formed at arm from the main land division and cut through 125. Both gullies were heavily truncated, surviving up to 1m wide and 0.3m deep. They typically contained a single silty fill (Fig. 70, Section AA). No other features which could be securely associated with these gullies were identified.

Phase 3: Flavian cremation activity

Ditch 1 lay close to the north-western limit of the site. It was heavily truncated by a later wall and its associated construction cut, and obscured in plan by post-medieval make-up layer 106 which was only removed in four small areas. The ditch was 2.25m wide, 0.5-0.8m deep, and contained a series of silty fills (Fig. 70, Section BB). Several fragments of a juvenile sheep were recovered from one of the fills, and this individual
The carcass may have been partially articulated at the time of deposition. The area to the south-east of ditch 1 was at least partially enclosed on two sides by gully 2, 0.5m wide and 0.3m deep (Fig. 70, Section DD). This area is designated as enclosure B. Within enclosure B a gully or elongated pit (gully 1) cut through one of the gullies of boundary A. Gully 1 was c. 3m long, 0.9m wide and up to 0.25m deep (Fig. 70, Section CC). To the south-east of it were a number of pits. Pit 133 lay centrally within the excavated area of enclosure B and was roughly circular in plan, 2m in diameter and 0.5m deep (Fig. 70, Section EE). Immediately to the west of this was pit 128 which was smaller and more irregular in plan (up to 1m wide and only 0.15m deep; Fig. 70, Section FF). Both pits contained small quantities of cremated adult human bone and pit 128 also included four fragments of burnt sheep-sized animal bone. Two circular intercutting pits (113 and 115) to the north-west of pit 133 were up to 0.9m in diameter and 0.25m deep (Fig. 70, Section GG). These two pits yielded good groups of pottery, some of which was heat-altered to varying degrees, suggesting a close association with a cremation pyre. The pits did not produce cremated human bone, but as samples were not collected for sieving it cannot be ruled out that they also contained small quantities of such material. Cross-context joins between pottery sherds from pits 113, 115 and 133 strongly suggest that they were infilled at the same time. The presence of glass droplets and small fragments of copper alloy in pits 133 and 128, along with the relatively small amounts of cremated human bone and the lack of evidence for a burial vessel, suggest that these pit fills contain pyre debris rather than cremation burials per se. The fills of the gullies defining enclosure B were very similar in character to

Fig. 69 Old Tetbury Road. Plan of Area A (1:250)
Section AA; Boundary A

Section BB; ditch 1 and wall 1

Section CC; gully 1

Section DD; gully 2

Section EE; pit 133

Section FF; pit 128

Section GG; pits 113 and 115

Fig. 70 Old Tetbury Road. Sections (1:20 and 1:50)
those of the pits, and also contained burnt pottery sherds of comparable form and date, suggesting that all these features were infilled at the same time. Another pit (203) was found in the northern part of enclosure B. This pit was not visible in plan and was only revealed when a section was excavated across one of the gullies of boundary A (which it partially cut). The pit was up to 0.4m deep and contained abundant fragments of limestone. Its function is unclear.

Two cremation burials were found to the south-west of enclosure B during the 2001 evaluation within an area not subsequently re-examined by the excavation. Burial C1142 was represented by the broken base of a pottery vessel filled with fragments of burnt bone. Burial C1143 lay 0.6m further to the north-west and comprised a small pit 0.32m long by 0.26m wide filled with frequent inclusions of charcoal, fragments of burnt bone up to 10mm in length and a probable iron hobnail. Both cremations were left in situ and were not further examined.

Phase 4: Masonry Wall

A masonry wall (wall 1) was constructed above the by now infilled ditch 1, its construction trench cutting into the ditch backfill. Above two courses of footings the wall was 0.75m wide and built from mortar-bonded dressed stones. It survived to a maximum height of 0.7m (Fig. 70, Section BB; Figs 71–2). In form and construction the wall appears typically Roman, although the recovery of a medieval iron spur from the infill of the construction trench raises a question as to its date. On balance a Roman date is preferred (see discussion).

Period 2: Post-medieval (early 19th century)

A thin layer (151) up to 0.1m-thick containing crushed oyster shell and charcoal partially overlay gully 2 of enclosure B. The full extent of the deposit was not exposed. Ditch 1 and wall 1 were covered by a clayey make-up deposit 106 up to 0.6m thick which contained 17th- to 18th-century material (Fig. 70, Section BB). This deposit is most likely to be associated with the construction in 1826 of the adjacent estate wall and lodge of Querns House. To the south-east of this deposit an irregular pit (pit 1) cut through Roman deposits.

Area B

A cremation burial was found close to the south-western edge of Area B cut into the surface of the natural brash (Fig. 73). Burial C1144 lay within a pit (504) which was 0.3m in diameter and heavily truncated to a maximum surviving depth of 0.1m. The cremated bone of a four-year-old child was contained within the base of a Savernake ware jar into which had also been placed a small cup. The cremation was covered by up to 0.9m of silty clay (502) which can be interpreted as an alluvial deposit associated with the infilling of the dry valley to the south-east. The surface of the clay was cut by an undated dry-stone culvert, 0.7m wide and 0.5m high, aligned north-east to south-west.

Dating evidence

Period 1: Phases 1 and 2

Phase 1 deposit 125 did not produce any dating evidence, while small quantities of coarseware pottery from the fills of the phase 2 gullies provide only a broad date. Fabrics include black sandy types TF 5 and 11 and Savernake ware (TF 6), types which are likely to pre-date the middle of the 2nd century AD. Similar dating is supported by the absence of
Period 1 - Roman

Fig. 73 Old Tetbury Road. Plan of Area B (1:250)

Dorset Black-Burnished ware, abundant in Cirencester after c. AD 130/50.

Period 1: Phase 3

Pottery from the fills of Ditch 1 is sparse and abraded, but in character it is comparable with that from boundary A, with material certainly of the period after c. AD 150 absent. Pits 113, 115 and 133 within enclosure B produced moderately large groups of pottery, including 30 sherds of South Gaulish samian (Tables 17–18). The samian forms indicate a Flavian date and in the absence of Central Gaulish material the likely date range is c. AD 70–100. Cross-context joins of samian and other vessels from each of these features suggest close contemporaneity. Similar dating is also probable for the substantial portion of a flagon of unusual type (Fig. 77, 3) and sherds of Dressel 2–4 wine amphora. The amphora(s), flagon and some of the samian vessels are heat-altered to varying degrees, suggesting incorporation in, or proximity to, the cremation pyre. The fills of gullies 1 and 2 also include burnished sherds of amphora and flagon comparable to material from pits 113 and 115. Other pottery from these gullies consists of earlier Roman coarseware types, including from gully 2 a shouldered bowl in TF 5, a type known from middle or late 1st-century AD deposits in the town (CE I, fig. 54, no. 138). The pottery vessels associated with Burial C1144 consist of a Savernake ware jar and a carinated bowl in TF 5. A date before c. AD 120/140 is suggested for the cremation by the presence of Savernake ware, a type which declines in use beyond the early 2nd century AD. A similar date is likely for the carinated cup.

Period 1: Phase 4

Foundation fill 139 and masonry 138 of wall A each produced single sherds of Dorset Black-Burnished ware, suggestive of dating after the early 2nd century AD. A fragmentary iron trowel spur (n.i.), possibly of 14th-century date, was recovered from the infill 162 of the construction trench for the wall (Fig. 70, Section BB). On balance this single item of metalwork is considered to be intrusive from the overlying post-medieval deposit 106 and a Roman date is preferred for the wall (see discussion).

Period 2

A single abraded Minety ware sherd datable to between the 12th and 15th centuries was recovered from layer 151. As medieval sherds occurred residually in clearly post-medieval deposits on the site, a post-medieval date for this deposit may also be likely. Levelling deposit 106 and pit 1 produced pottery groups of very similar composition which probably date to the mid 18th century. Most abundant are glazed earthenware sherds with clear (red-appearing) glaze and mottled brown glazed Staffordshire/Bristol-type earthenware. There are occasional sherds of English tablewares in the form of white salt-glazed stonewares and tin-glazed earthenware, and continental imports comprising Frechen and Westerwald stonewares.

The Former Cattle Market site

Introduction

When plans for the redevelopment of the cattle market were originally proposed the archaeological potential of the site had been considered to be high. The stone coffin of a child and numerous urned cremations were found during the levelling of the area for the construction of the cattle market in February 1867. There are also references to a second stone coffin, although other descriptions refer to ‘a square stone with space for bones’ which would fit with other examples in Cirencester of cremations being interred in hollowed-out stone blocks (CE II, 207, MFS A10–12 nos 1058–62). Three of the cremation vessels survive in the Corinium Museum and date to the 1st and 2nd centuries AD (ibid., fig. 88, nos 1058–1060). Burial 1060 also contained a 1st-century AD pottery lamp. Another stone coffin was discovered on the site in 1983 during levelling for the creation of a car park (ibid., MFS appendix no. 1141). At least 46 cremations and 8 extended inhumations were recorded in 1960 during salvage recording immediately to the north-east of the cattle market at Oakley Cottage (now Bridges Garage; Reece 1962) (Fig. 74). Given these discoveries an archaeological evaluation comprising the excavation of 30 trenches was undertaken by Oxford Archaeology in 2002 to assess the potential of the site (Oxford Archaeology 2002d). The evaluation revealed a complete absence of archaeological deposits in the central part of the cattle market, although in trench 6 adjacent to Old Tetbury Road a single urned cremation and inhumation were found. Deposits of silty clay were found in trenches 22, 24, 25 and 26 in the southern sector of the site infilling the dry valley.

Following the evaluation planning permission was granted for the construction of a new leisure centre, which commenced in October 2004. CA was commissioned to monitor groundworks, which comprised the
Fig. 74 Former Cattle Market. Areas examined during the watching brief and other archaeological investigations in and around the site (1:1250)
removal of hard standings and make-up beneath the footprint of the new building and part of its car park, and a few areas of localised deep excavation. Given the survival of Roman deposits in the northern part of the site adjacent to Old Tetbury Road it was hoped to preserve any burials in this area where possible.

Results

Five cremation burials and one extended inhumation were recorded during the watching brief, as well as clay silt deposits infilling the dry valley to the south. The level of truncation in the central and northern parts of the site resulting from the construction of the cattle market was found to be very high, with the make-up for tarmac surfacings frequently directly overlying natural. Natural comprised limestone brash in a clay matrix above firmer bedrock. The natural ground surface, as revealed following machine stripping, sloped down markedly to the south and west, its height falling from approximately 115.9m AOD in the northernmost part of the site to approximately 111.2m AOD by the southernmost limit of excavation. This slope would originally have been more pronounced as the natural substrate was heavily truncated in the northern part of the site and despite the drop in ground level was not generally exposed to the south where it remained covered by post-medieval topsoil up to 0.3m thick. An exception to this was two deep trenches (Fig. 74, CT3 and CT4), excavated by the contractor, which revealed a thick clayey deposit with frequent limestone inclusions (302/402; n.i.). This material was quite difficult to tell apart from the natural, but was distinguished by its darker colour. In CT 4 the deposit was approximately 2.5m thick and directly overlay limestone bedrock. The base of the layer was not exposed in CT 3. Deposit 302/402 was not recorded elsewhere on the site, soakaway trenches further to the north revealing only bedrock beneath 0.3m of natural clay brash. Former topsoil 003 had also been entirely removed in the northern part of the site.

Towards the western limit of the site there was a localised dip in the ground level which was filled with grey-blue clay (005) up to 0.3m deep. The full extent of the clay was not revealed, and it was covered by a thin spread of blue clay containing lenses of orange sand (004; n.i.). Both clays are most likely to have been deposited by water action, and the possibilities are that they formed within either a natural watercourse or else a natural or man-made pond. The natural ground level is falling to the south-west and clay was encountered at a depth of almost 1m below the car park surface in evaluation trench 21. The lake within the grounds of Cirencester Park is only short distance away on the opposite side of Old Tetbury Road and it is conceivable that this natural dip was originally occupied by a watercourse draining south-eastwards into the now fully silted-up dry valley. The construction of the lake perhaps led to the drying up of the watercourse, and alluvial deposit 004 was sealed by post-medieval topsoil 003 indicating that the feature had gone out of use by this time. No trace of similar alluvial deposits was found in any of the evaluation trenches in this part of the site, however, and consequently the interpretation as a pond is equally plausible.

At the northern end of the site natural was partially overlain by a patchy brown clay-silt between 0.8m and 0.23m deep, probably the remnants of a Roman ground surface as it was cut through by burials C1145, 7, C1150 and B1152. It can be equated with the similar deposit found at Old Tetbury Road. In all six human cremation burials (C1145–50) were found buried in pits close to the north-western limit of the site (Fig. 75). Although these burials were found grouped together, there was

Fig. 75 Former Cattle Market. Plan of the burials (1:500)
no obvious pattern to their layout. Each pit was roughly circular in plan and had been severely truncated during the construction of the cattle market so that they only survived to a depth of between 80 and 200mm. This high level of truncation meant that the profiles of the pits were difficult to characterise, but they appeared to be generally U-shaped. The lower portions of cremation vessels survived intact within C1145, C1147, C1149 and C1150. Burial C1148 was interred in a very precisely dug oval-shaped pit 0.7m long, 0.45m wide and 0.13m deep. The pit was filled with dark brown silty clay containing abundant flecks of charcoal and burnt bone, and large sherd s of pottery which are probably the remnants of a cremation urn. Burial C1146 comprised a sub-circular pit 0.42m in diameter which was filled with much charcoal, especially around the edges, along with small fragments of cremated bone and sherds of pottery. It is conceivable that this feature represents a highly truncated cremation burial (and thus it has been ascribed a burial number), although alternatively the pit may have been dug for the disposal of pyre debris. Burial C1150 was found and lifted during the evaluation. This was found right on the edge of trench 6 and comprised an irregular cut up to 0.8m wide and 0.34m deep containing a fragmentary pottery vessel partially filled with cremated bone. The upper fill of the cut contained scattered sherds from other vessels which had presumably been disturbed by the construction of the cattle market. Each cremation burial was that of an adult individual, but it was not possible to sex the remains. Quantities of juvenile sheep bone within C1147 and C1148 indicate that a leg of lamb had been placed onto the cremation pyre with the body as part of the funerary rite. Other pyre goods recovered were two heat-affected bone hairpins from C1149, a copper-alloy hook and stud from C1150 and iron nails from C1145–9.

The extended inhumation burial (B1151) of an adult female between 36 and 45 years old was found 4m to the north-east of the cremations. The body lay supine with the hands paced on the pelvis, and was orientated north-west/south-east with the head to the north-west. It had been buried in a well-fitting rectangular grave, 2.2m long and 0.6m wide, which had been severely truncated. Nails found around the skeleton indicated the former presence of a wooden coffin. A second inhumation (B1152) was discovered in evaluation trench 6. The skeleton was cleaned sufficiently to permit basic identification but was not otherwise excavated. The burial was left in situ at the completion of the evaluation and it subsequently proved possible to preserve this area within the development. B1152 lay within a shallow rock-cut grave 0.9m long by 0.52m wide. The skeleton was in a very fragmentary condition and most of the bone appeared to have been previously disturbed and partly scattered. The skull had been broken in antiquity and was partially incomplete with both the lower portion of the skull and jaw missing. The body was aligned north-east/south-west and the size of both the grave and the bones exposed indicate that it was a juvenile. An area of modern disturbance (117) to the south-west of the recorded burials has probably destroyed any further burials in this area which had escaped truncation during the construction of the cattle market. A ditch (111), 0.58m wide and up to 0.41m deep, was exposed for a length of 10m running parallel with Old Tetbury Road. The ditch fill contained animal bone but no pottery. While undated it is more likely to be associated with the cattle market than the Roman burials.

Dating evidence

The dates of the individual burials are discussed below, as a group they appear to date between the later 1st and 3rd centuries AD. The post-medieval topsoil 003 contained eight sherds of earlier Roman coarsewares (TF 9, TF 17 and TF 5) and South Gaulish samian (TF 154a), presumably disturbed from underlying deposits. Quantities of re-deposited Roman and medieval pottery occur alongside post-medieval and later pottery in deposits 118 and 122 associated with the construction of the cattle market in 1867. The latest material in these deposits consists of mottled brown-glazed earth-

Table 16: Metalwork and glass from burials and associated deposits at Old Tetbury Road and the Former Cattle Market (quantification by fragment count)

<table>
<thead>
<tr>
<th>Feature no.</th>
<th>Pit 128</th>
<th>Pit 133</th>
<th>C1144</th>
<th>C1145</th>
<th>C1146</th>
<th>C1147</th>
<th>C1148</th>
<th>C1148</th>
<th>B1151</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample no.</td>
<td></td>
<td></td>
<td><1></td>
<td><1></td>
<td><2></td>
<td><3></td>
<td><5></td>
<td><103-4></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metalwork</td>
<td></td>
</tr>
<tr>
<td>Fe nails: 20mm</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Fe nails: 25–40mm</td>
<td>-</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>Fe nails: 45–65mm</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>5</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Fe nails: shaft/head fragments</td>
<td>18</td>
<td>47</td>
<td>14</td>
<td>14</td>
<td>-</td>
<td>-</td>
<td>21</td>
<td>4</td>
<td>118</td>
<td></td>
</tr>
<tr>
<td>Fe hobnails</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>11</td>
<td>-</td>
<td>15</td>
</tr>
<tr>
<td>Fe sheet/strip fragment</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Green glass</td>
<td></td>
</tr>
<tr>
<td>Fully distorted/droplets</td>
<td>35</td>
<td>9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>44</td>
</tr>
<tr>
<td>Part distorted tubular</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Unburnt, thin-walled</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Clear glass</td>
<td></td>
</tr>
<tr>
<td>Fully distorted/droplets</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
</tbody>
</table>
Table 17: Summary of pottery from cremation burials/related features at Old Tetbury Road and the Former Cattle Market

KEY: Count = sherd count; Min. vcss. = minimum number of vessels; EVEs = rim estimated vessel equivalents.

*Numerical codes relate to Cirencester-type series (Rigby CE I-ll; Keely CE III). Codes in parentheses derive from National Roman Fabric Reference Collection (Tomber and Dore 1998).

<table>
<thead>
<tr>
<th>Context</th>
<th>Fabric*</th>
<th>Form</th>
<th>Count</th>
<th>Min. vcss.</th>
<th>EVEs</th>
<th>Weight (g)</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Old Tetbury Road</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1144 Pit 504 (505/6)</td>
<td>6 (SAV GT)</td>
<td>large jar</td>
<td>17</td>
<td>1</td>
<td>1254</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>carinated bowl</td>
<td>34</td>
<td>1</td>
<td>.20</td>
<td>224</td>
<td>-</td>
</tr>
<tr>
<td>Pit 113 (112)</td>
<td>154a (LGF SA)</td>
<td>18</td>
<td>9</td>
<td>3</td>
<td>.45</td>
<td>168</td>
<td>Includes NAT stamp</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4 x burnt</td>
</tr>
<tr>
<td></td>
<td>154a (LGF SA)</td>
<td>18/31</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>154a (LGF SA)</td>
<td>27</td>
<td>10</td>
<td>5</td>
<td>.10</td>
<td>34</td>
<td>2 x burnt</td>
</tr>
<tr>
<td></td>
<td>39</td>
<td>-</td>
<td>13</td>
<td>1</td>
<td>-</td>
<td>132</td>
<td>burnt; CC 114/131</td>
</tr>
<tr>
<td></td>
<td>flag.fab.</td>
<td>-</td>
<td>45</td>
<td>1</td>
<td>-</td>
<td>360</td>
<td>burnt; CC 114/131</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>platter</td>
<td>1</td>
<td>1</td>
<td>.06</td>
<td>10</td>
<td>-</td>
</tr>
<tr>
<td>Pit 115 (114)</td>
<td>154a (LGF SA)</td>
<td>Drag. 18</td>
<td>4</td>
<td>3</td>
<td>.35</td>
<td>36</td>
<td>one join to 112</td>
</tr>
<tr>
<td></td>
<td>154a (LGF SA)</td>
<td>Drag. 18R</td>
<td>1</td>
<td>1</td>
<td>.10</td>
<td>8</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>154a (LGF SA)</td>
<td>Drag. 18</td>
<td>27g</td>
<td>4</td>
<td>2</td>
<td>.10</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>burnt; CC 112/131</td>
</tr>
<tr>
<td></td>
<td>flag.fab.</td>
<td>flagon</td>
<td>27</td>
<td>1</td>
<td>-</td>
<td>180</td>
<td>burnt; CC 112/131</td>
</tr>
<tr>
<td></td>
<td>6 (SAV GT)</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>8</td>
<td>-</td>
</tr>
<tr>
<td>Pit 133 (131)</td>
<td>154a (LGF SA)</td>
<td>Drag. 18</td>
<td>1</td>
<td>1</td>
<td>.05</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>39</td>
<td>-</td>
<td>46</td>
<td>2</td>
<td>-</td>
<td>1042</td>
<td>burnt</td>
</tr>
<tr>
<td></td>
<td>flag.fab.</td>
<td>-</td>
<td>9</td>
<td>1</td>
<td>-</td>
<td>134</td>
<td>CC 112/114</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>jar</td>
<td>8</td>
<td>2</td>
<td>-</td>
<td>38</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>Sub-total</td>
<td></td>
<td></td>
<td>268</td>
<td>27</td>
<td>2.11</td>
<td>3912</td>
<td>-</td>
</tr>
<tr>
<td>Former Cattle Market</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1145 (104)</td>
<td>74 (DOR BB1)</td>
<td>jar</td>
<td>34</td>
<td>1</td>
<td>-</td>
<td>128</td>
<td>as urn; base only</td>
</tr>
<tr>
<td>C1146 (107)</td>
<td>6 (SAV GT)</td>
<td>jar</td>
<td>9</td>
<td>1</td>
<td>-</td>
<td>31</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>?Pyre deposit</td>
</tr>
<tr>
<td>C1147 (108)</td>
<td>17</td>
<td>jar</td>
<td>5</td>
<td>1</td>
<td>-</td>
<td>34</td>
<td>Heat-affected sherds</td>
</tr>
<tr>
<td>C1148 (115)</td>
<td>6 (SAV GT)</td>
<td>jar</td>
<td>34</td>
<td>1</td>
<td>-</td>
<td>420</td>
<td>as urn?</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>-</td>
<td>12</td>
<td>1</td>
<td>-</td>
<td>32</td>
<td>-</td>
</tr>
<tr>
<td>C1149 (126)</td>
<td>74 (DOR BB1)</td>
<td>jar</td>
<td>60</td>
<td>1</td>
<td>-</td>
<td>120</td>
<td>as urn; base only</td>
</tr>
<tr>
<td>C1150 (610)</td>
<td>74 (DOR BB1)</td>
<td>jar</td>
<td>84</td>
<td>1</td>
<td>-</td>
<td>602</td>
<td>BB1 ev.-rim jar as urn</td>
</tr>
<tr>
<td>Layer 122</td>
<td>9</td>
<td>flagon</td>
<td>8</td>
<td>5</td>
<td>1.7</td>
<td>333</td>
<td>T9 variant</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>jar</td>
<td>1</td>
<td>1</td>
<td>.08</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>?</td>
<td>24</td>
<td>21</td>
<td>-</td>
<td>411</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>35 (GAL AM1)</td>
<td>amphora</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>498</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>jar</td>
<td>1</td>
<td>1</td>
<td>.10</td>
<td>13</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>?</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>16</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>106-9</td>
<td>bowl</td>
<td>1</td>
<td>1</td>
<td>.20</td>
<td>91</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>101-4</td>
<td>dish</td>
<td>1</td>
<td>1</td>
<td>.18</td>
<td>136</td>
<td>-</td>
</tr>
<tr>
<td>Sub-total</td>
<td></td>
<td></td>
<td>441</td>
<td>41</td>
<td>3.26</td>
<td>4455</td>
<td>-</td>
</tr>
</tbody>
</table>

eneware of probable 18th-century date, glazed earthenwares broadly dating between the 16th and 18th centuries and creamwares dating after c. 1780.

Artefacts associated with the burials and pyre debris by E.R. McSloy

Inhumation B11/11

Iron nails recovered from the grave fill suggest the presence of a wooden coffin (Table 16). A small, unfetured chip of dark green glass and a small body sherd of pottery in a coarse grey fabric were also found.

Urned cremations

Cremation burials C1144, 1145, 1147, 1149 and 1150 were urned, as probably was C1148 although it had been much disturbed. In nearly all cases truncation had resulted in the removal of all but the lower portions of the pottery vessels. Non-ceramic artefacts from the cremations were mostly recovered as a result of the sieving of soil samples. Details of the vessels associated with C1150 are taken from E. Biddulph’s description contained within the evaluation report and the sherds have not been re-examined (Oxford Archaeology 2002d).
Burial C1144 at Old Tetbury Road contained two vessels: a large Savernake ware jar (Fig. 77, no. 1), the upper portion of which had been removed by truncation, and, placed inside, a carinated cup (Fig. 77, no. 2) in local black-sandy fabric (TF 5). The form of this vessel, which is derived from late Iron Age ('Belgic') vessels, would seem to be previously unknown in this fabric. Similar forms in Severn Valley ware date to the mid 1st and 2nd centuries AD (Webster 1976). As almost all of the cremated bone came from the base of the larger vessel this suggests that the smaller vessel functioned as a true accessory, and not as a primary container within a protective secondary vessel, comparable to amphora burials known elsewhere (Barber and Bowsher 2000, 106–9).

Burial C1148 also included the lower portion of a Savernake type ware jar and sherds from a vessel of uncertain class in TF 5. The pottery from this deposit probably also derives from a disturbed urned cremation and an accessory vessel. Once again a date before the mid 2nd century AD is likely. The occurrence of an accessory vessel inside the primary container is unusual in Roman Britain and cremation burials in south-west England with more than one pottery vessel are rare, unlike the south-east (Philpott 1991, 30–42). At Oakley Cottage Cremation XG of a young adult male had a ring-necked flagon accompanying the cremation urn (Reece 1962, 63).

Three of the burials were accompanied by Black-Burnished ware (TF 74) vessels (Table 17). All appear to be jars, but the degree of truncation of the vessels precluded more detailed classification, with the exception of the vessel containing C1150 which dates to between the mid 2nd and earlier 3rd centuries AD. The upper fill of the cremation pit contained sherds from another Black-Burnished ware jar and sherds in grey, oxidised (orange firing) and sandy whiteware fabrics.

Broader dating, between the middle of the 2nd and 4th century AD, is proposed for the heavily truncated vessels with C1145 and C1149. Burial C1147 included the larger part of a jar in a local (North Wilts) reduced ware fabric (Fig. 78, no. 1). The survival to full profile of this vessel is presumably the result of deposition within a deeper cut, or the collapse of the vessel long before the levelling of the site. Dating for this vessel, despite its level of completeness, is broadly from the earlier 2nd to 3rd century AD.

Non-ceramic artefacts

A small hook and a tiny stud, both made of copper alloy, were recovered from the processed residues of Burial C1150. The hook may originally have been part of a brooch but it could equally, together with the stud, have come from a small box. Iron carpentry nails were recovered from seven of the cremation burials (Table 16). They are presumably pyre goods derived from the coffin or the bier which were collected with the human remains and placed within the urn. The abundance of nails makes it less likely that they all derive from the burning as fuel of reclaimed structural timbers on the pyre. Where identifiable the nails are of typical Roman carpentry form (Manning’s 1985, 134 type 1b). Nails are frequent finds in Roman cremation deposits (Evans and Maynard 1997, 190). Hobnails retrieved from C1146 and 1148 and fragments of two heat-affect ed worked bone hairpins from C1149 indicate that at least some of the deceased may have been clothed or adorned at the time of cremation. The bone hairpins from C1149 are fragmentary, but appear to be of a fairly unusual type which is not easily placed within Crummy’s typology. They are perhaps closest to her Type 5 pins, considered to date to after c. AD 250 (Crummy 1979, 162). The swollen shaft form exhibited by no. 1 also appears to be a feature of 3rd or 4th-century AD bone pins (ibid., 157). A closer match for the head form of no. 1 can be found among metal pins of Cool’s Type 21 (Cool 1990, 170), a type which is unfortunately not reliably dated.

Illustrated pins (Fig. 76)

1. Cremation C1149 (fill 127). Worked bone (heat-affected): head and upper portion of probable hairpin. Head features cup-like and spherical moulding with circular depression at the top. The shaft is of shouldered form with a pronouncedly constricted neck. Surviving length 27mm; diameter at shoulder 7.5mm.

2. Cremation C1149 (fill 127). Worked bone (heat-affected): small fragment from the junction of shaft and head. Narrow cordon, with expanding (concoidal or spherical) moulding above. Surviving length 11mm; diameter at neck 5.5mm.

Table 18: Summary of the samian forms at Old Tetbury Road. All material is South Gaulish (La Graufesenque) (quantification by minimum vessel count)

<table>
<thead>
<tr>
<th>Form</th>
<th>Pit 113 (112)</th>
<th>Pit 115 (114)</th>
<th>Pit 133 (131)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drag. 18</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Drag. 18R</td>
<td>—</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Drag. 18/31</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>Drag. 27</td>
<td>5</td>
<td>2</td>
<td>—</td>
<td>7</td>
</tr>
<tr>
<td>Total</td>
<td>9</td>
<td>6</td>
<td>1</td>
<td>16</td>
</tr>
</tbody>
</table>
Pyre debris

The interpretation of the features within enclosure B at Old Tertbury Road rests primarily on the quantities of cremated bone retrieved, identification of pyre goods and other aspects of the artefact assemblage. Cross-context pottery links between pits 133 and 113/115 indicate the close contemporaneity of the features, and the uneven distribution of material between them, particularly in the case of the samian, may be suggestive of deliberate selection or placement (Tables 17–18).

Pottery

Estimation of the number of vessels represented is rendered difficult by the poor condition of the pottery. The vessel count expressed in Table 17 is almost certainly an overestimate of the actual total. Much of the pottery has clearly been subjected to high temperatures. This is most evident in the discolouration, surface loss and powdery feel of the amphora and flagon fabrics. The samian is affected to a lesser degree, with only some patchy discolouration evident. The most striking aspect of the group is the abundance of continental wares and the virtual absence of locally produced coarsewares. The composition of this group, which contrasts distinctly with contemporary domestic groups from Cirencester (CE V, 327–9), is almost certainly a reflection of the nature of the deposit. Strong emphasis is evident from the forms represented (wine amphora, flagon, cups and platters) on the consumption of food and drink, and it is highly likely that the group represents evidence for feasting associated with the funeral rites. The samian was almost entirely confined to pits 113 and 115 (Table 18) and consists of plainware platters and cups. Estimation of the number of amphorae present in this group was made particularly problematic by the condition of the sherds and identification as Dressel 2–4 type is based upon their distinctive bifid-handles (Fig. 77, no. 4). This type of amphora occurs in Britain throughout the 1st century AD and typically contained wine. It was manufactured at a number of continental and British locations, but as the sherds have been much affected by heat, identification of fabric is difficult (Peacock and Williams 1986, 105–6). The illustrated vessel (Fig. 77, no. 4), represented by ten sherds from pit 133, is most likely of the early Campanian type (R. Tomber, pers. comm.). The second vessel, dispersed across pits 133 and 113/115, is of a much finer buff/pink-firing fabric which is more typical of Gaulish examples.

Nothing is present within the rest of the pottery to contradict a late 1st-century AD date. The flagon/amphora (Fig. 77, no. 3) is of unusual type, its form reminiscent of flat-based Gaulish wine amphorae, but with round-sectioned handles. Identification of the fabric of this vessel is once again difficult due to the extent of heat alteration which has resulted in the loss of surfaces and discolouration. The form does not appear to have been encountered previously in Cirencester, the closest parallels occurring in late 1st/2nd-century AD contexts at Colchester (Hawkes and Hull 1947, Camulodunum type 168).

Samian by P.V. Webster

The Old Tertbury Road site produced only a small amount of samian, all of it from South Gaul and thus of 1st to early 2nd-century AD date. The maximum number of vessels represented was 21, of which 16 were associated with deposits associated with cremation activity (Table 18). The other five vessels are likely to have been disturbed from these deposits. Almost half of the assemblage was composed of the plate forms 18 and 18R. The only other forms represented by more than one vessel was the cup form 27 (seven examples) and dish 18/31 (two). Most notable, even in such a small assemblage, is the total absence of decorated forms.

Non-ceramic artefacts

Quantities of heat-distorted vessel glass and metal items were recovered from pits 128 and 133, predominantly as a result of the sieving of soil samples (Table 16). No comparable material was retrieved from pits 113 and 115, features from which soil samples were not taken. A few unburnt, or less severely distorted, fragments among the glass indicate the presence of thin-walled fineware vessels. Clear and natural green-coloured glass is represented. The more heavily distorted glass might derive from vessels or other items, such as beads.

Iron nails are abundantly represented in pits 113 and 115. All, where identifiable, are of Manning (1985) type 1b. As with the cremation burials the nails probably derive from a coffin or bier burnt as part of the cremation rite. The occasional presence of cremated bone adhering to a nail and the absence of mineralised wood are further indications of the presence of the nails within the pyre. Copper-alloy items from pit 128 consist of fragments of thin sheet, one with a domed rivet in situ, and two detached flattened-domed rivets. They probably represent fittings for a wooden casket or box. Similar fittings adorned a box found in a grave at the Butt Road cemetery in Colchester (Crummy 1983, 85–8).

The fill of pit 107 (designated Burial C1146) at the Former Cattle Market contained small quantities of heat-affected pottery, representing at least two vessels (Table 17). Dating on the basis of the identifiable fabrics is between the mid 1st and mid 2nd centuries AD. The pit contained 20 fragments of iron nails and a small chip (<1 g) of colourless glass. As the latter was not heat-affected it probably does not represent pyre goods, but rather a fragment from a disturbed grave good or simply a chance inclusion (Table 16). The burnt and fragmented nature of the pottery, combined with the abundance of charcoal and the very small amount of cremated bone present, is more consistent with this deposit representing pyre debris than a discrete cremation burial. Nevertheless as this interpretation is less certain than for the pits at Old Tertbury Road it was deemed safest to allocate this feature a burial number.

Discussion

Few cremation burials have been excavated and analysed in Cirencester since Reece’s (1962) publication
of 45 urned burials from Oakley Cottage. Consequently those reported here are of some interest. While the dating of the burials has been hindered by the levels of truncation there are some indications that their date span may be relatively broad. Certainly the burials discovered at the Former Cattle Market do not represent a discrete cluster of burials, but rather the survivors from a much larger cemetery largely removed by levelling in 1867. The majority of cremation burials appear to have been interred within single vessels, with Dorset Black-Burnished ware cooking pots used most commonly. Burials containing more than a single vessel might belong to relatively early phase of cemetery use. The focus for cremation burial appears to be between the later 1st and late 2nd or early 3rd century AD, based mainly upon the evidence of the dates ascribed to the Dorset Black-Burnished ware cooking pots. There is some suggestion that burial continued into the later 3rd century AD on the basis of hairpin fragments from C1149. A few 3rd or 4th-century AD cremations utilising Black-Burnished ware jars have been found elsewhere in the Bath Gate cemetery (CEC II, 97). Bone hairpins, similar to those with C1149, have been recovered from other Romano-British cemeteries. Those at Ospringe, Kent, and Colchester contain solely hairpins, but they are more common in association with other artifacts such as brooches, beads or glass vessels (Philpott 1991, 128–32). Hobnails are most frequently found in cremations in the South-East of England, although they occur in smaller numbers farther afield (ibid., 165).

Exact parallels for the distribution of pyre goods found in the pits at Old Tetbury Road (and, if it is not a formal cremation burial, pit 105 (C1146 at the Former Cattle Market) are not readily forthcoming, a reflection that such deposits have to date been infrequently recognised in Romano-British cemeteries. Of the three cremation burials found in the Bath Gate cemetery, two were urned and one was unurned (CE II, 97–100). The latter (Burial 293) was found in a large pit full of burnt material containing small fragments of bone, a description which is consistent with pyre debris. At the eastern cemetery of London pyre debris was typically found in shallow spreads, samples from which produced an abundance of artefacts and cremated bone (Barber and Bowsher 2000). More closely comparable in terms of feature morphology are the late Iron Age pyre-related features, including pits, found at Westhampton, West Sussex, and Baldock, Hertfordshire (McKinley 1997, 57; 1993). The composition of the almost contemporary pyre deposits in the London eastern cemetery compare in many respects to those from within enclosure B, particularly in the abundance of pyre goods. Importantly, however, they differ in that multiple individuals were represented there, suggesting that those deposits were composed of accumulations from successive cremations, rather than a single event. Comparison of the pottery from the London deposits against contemporary domestic assemblages revealed differences which reflect in part what is seen here in Cirencester. A higher incidence of amphora and cup/beaker forms was interpreted in London as evidence for the consumption of alcohol associated with feasting at the funeral (Barber and Bowsher 2000, 67–8).

Other pottery by E.R. McSloy

Small quantities of Roman and later pottery were recovered from non-funerary deposits at the Former Cattle Market, and a small group merits some further comment derived from levelling deposit 122 associated with the construction of the market (Table 17). In addition to small quantities of later Roman and post-medieval pottery, a number of sherds in a distinctive flagon fabric were recovered. Their fresh condition suggests that they have been disturbed from a discrete Early Roman deposit. The most significant aspect of this group is the presence of large sherds in an oxidised fabric which in some instances exhibit signs of over-firing and bloating. The comparative abundance of
vessels of this type in this one deposit is unusual, and when combined with the condition of the sherds, suggests a group of wasters or perhaps kiln seconds. The fabric compares in most respects with TF9, which is abundant in the town after c. AD 70/5 and is considered to derive from a relatively local source (CE I, 154). It differs most from the published description for TF9 in its apparently greater abundance of calcareous (oolitic limestone) inclusions. Identifiable forms consist of flagons which all appear to be single-handled, ring-necked types, with bulbous bodies and foot-ring bases (Fig. 78, nos 2–3). The forms suggest a date between the mid/later 1st and early 2nd centuries AD and compare with previously published examples in fabric TF9 (CE I, fig. 55, no. 181).

Fabric description
TF9 variant. Buff surfaces and margins with blue-grey core. Surfaces are soft and powdery. Fracture is fine. Rare to common round, oolitic limestone (0.5–1mm) and rare red iron oxide (1–2mm). There are frequent voids visible to the surfaces and break resulting from the leaching of calcareous inclusions.

Illustrated vessels

Old Tetbury Road (Fig. 77)
1. Savernake ware (TF 6). Lower portion of a jar which served as an urn. Burial C1144 (504).

Former Cattle Market (Fig. 78)

Human remains
Three deposits of cremated bone were retrieved from the Old Tetbury Road site in the form of soil samples. Burial C1144 was urned, but severely truncated, and was fully excavated. The deposits of bone from pits 128 and 133 were not complete samples as both pits were only half sectioned. One inhumation (B1151) and five cremation (C1145–9) burials were found during the watching brief at the Former Cattle Market. A further cremation burial C1150 was lifted and examined by Oxford Archaeology during the evaluation, and the analysis by Witkin below is reproduced from the evaluation report (Oxford Archaeology 2002d). A second inhumation B1152 was also found during the evaluation, but as it was not lifted it has not been subjected to analysis.

Inhumation burial B1151 by Teresa Gilmore

Methodology
Sex was determined using morphological criteria and metric variation (Brothwell 1981; Buikstra and Ubelaker 1994; Bass 1995). Adult age was assigned on the basis of the skeletal parts present; dental attrition (Brothwell 1981); sternal rib ends (Iscan and Loth 1984;
isCan et al. (1985) and auricular surface degeneration (Lovejoy et al. 1985). Unfortunately no pubic symphyses survived due to the degree of fragmentation. Pathology was determined by macroscopic inspection, using criteria in Manchester and Roberts (1995) and Schwartz (1995). Non-metric variation was determined using criteria in Brothwell (1981). Limited metric analysis was possible due to the fragmentary nature of the remains.

Preservation and completeness
Preservation of human skeletal remains depends on a variety of taphonomic factors including size, shape and robusticity of the bones. The conditions after burial can also affect the preservation, including disturbance of the burial, soil characteristics and treatment after excavation. Unfortunately, despite the bone surface being in very good condition, the bones belonging to B1151 were fragmentary, and only a couple of cervical vertebrae survived intact. Overall the preservation was classified as moderate on a five-point scale from excellent to very poor. Approximately 70–75% of the skeleton has survived for analysis (Table 19).

Age, sex and stature
A single individual is represented, an adult female between 36 and 45 years old. Stature can be established using any of the long bones, assuming they are complete and fully fused. No long bones survived intact from the burial. In order to gain an idea of stature the right radius, which had a single clean break, was reconstructed and measured. This produced a stature of 154.9cm ± 4.24cm. This is an approximate stature as it was produced from a broken arm bone (the femur and tibia provide the most accurate assessment of stature, whereas the long bones of the arm, in particular the radius and ulna, provide the least accurate assessment).

Non-metric traits and pathology
Non-metric traits are examples of normal skeletal variation either related to activity or genetic disposition. Commonly encountered examples are extra bones present in the cranial sutures or wormian bones, squatting facets on the distal tibia, and pronounced ridges on the lateral edges of incisors. Due to the degree of fragmentation the only non-metric trait recorded from the skeleton was an accessory sacral facet. No cranial or dental non-metric traits were found.

Degenerative joint disease consists of evidence of degradation of joints relating to activity, disease and age. The key features consist of osteophyitic lipping (extra bone growth) around the edges of the joint surface, eburnation (polishing) of the joint surface and porosity of the joint surface. The burial demonstrated very little evidence for degenerative joint disease. A total of 5/20 vertebral bodies demonstrated either minor osteophytes or very mild porosity over the surface, mainly on the inferior surface, indicating a degree of physical activity from a young age. The enthesopathies (muscle attachments) on the arm bones and the vertebral arches are pronounced, suggestive of physical activity. Metabolic disease provides evidence of dietary deficiency and stress, predominately during childhood. Cribra Orbitalia, the presence of a fine pitting of the orbital roof, is linked to childhood anaemia and tends to get remodelled as the individual ages into adulthood. It was present in both the left and right orbits of the skeleton.

Dental pathology can be noted in many forms, including calculus (mineralised plaque) to caries and periodontal disease to lines of hypoplasia (temporary cessation of dental development) on the teeth, produced during periods of nutritional stress during childhood. The mandible and the left maxilla were present in the burial, with a total of 29 teeth. Slight calculus was present on 15/29 teeth (52% of teeth present) mainly on the buccal or lingual surfaces. Lines of dental enamel hypoplasia (DEH) were noted on 11/29 (38% of all teeth present). Lines were present on the canines, incisors and first and second premolars, suggesting either periods of dietary or emotional stress, or disease, between two and six years of age.

Conclusions
The burial is of a female aged between 36 and 45 years at time of death. Evidence of dietary malnutrition or disease during early childhood is testified by the presence of lines of hypoplasia on the teeth and evidence of iron-deficiency anaemia. The presence of early stages of degenerative joint disease and pronounced enthesopathies indicate a degree of physical activity from a young age. The burial displays consistent features with the skeletons recovered from the Bath Gate cemetery (CEC II). There Cribra Orbitalia was present in 35 of 405 individuals, seven

Table 19: Summary of inhumation burial B1151 at the Former Cattle Market

<table>
<thead>
<tr>
<th>Grave Dimensions (m)</th>
<th>Coffin?</th>
<th>Preservation</th>
<th>Completeness (%)</th>
<th>Age at death (years)</th>
<th>Sex</th>
<th>Orientation</th>
<th>Body position</th>
<th>Dental pathology</th>
<th>Pathology</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.86 x 0.6</td>
<td>Iron nails present suggesting coffin</td>
<td>Good</td>
<td>70–75%</td>
<td>36–45</td>
<td>F</td>
<td>N-S</td>
<td>Extended, supine</td>
<td>Calculus 15/29; DEH 11/29</td>
<td>Cribra Orbitalia; DJD on vertebral bodies</td>
</tr>
</tbody>
</table>
Table 20: Weights of cremated bone at Old Tetbury Road and the Former Cattle Market

<table>
<thead>
<tr>
<th>Bone group</th>
<th>Total weight (g)</th>
<th>Total weight of >10mm fraction (g)</th>
<th>Total weight of >5mm fraction (g)</th>
<th>Total weight of >2mm fraction (g)</th>
<th>Fraction %</th>
<th>Total weight (g)</th>
<th>Total weight of >10mm fraction (g)</th>
<th>Total weight of >5mm fraction (g)</th>
<th>Total weight of >2mm fraction (g)</th>
<th>Fraction %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Old Tetbury Road</td>
<td></td>
</tr>
<tr>
<td>C1144</td>
<td>114</td>
<td>10</td>
<td>8.8</td>
<td>64</td>
<td>56.1</td>
<td>35</td>
<td>30.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pit 128</td>
<td>56</td>
<td>3</td>
<td>5.4</td>
<td>28</td>
<td>50.0</td>
<td>24</td>
<td>42.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pit 133</td>
<td>42</td>
<td>2</td>
<td>4.8</td>
<td>20</td>
<td>47.6</td>
<td>18</td>
<td>42.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Former Cattle Market</td>
<td></td>
</tr>
<tr>
<td>C1145</td>
<td>72</td>
<td>1</td>
<td>1.4</td>
<td>43</td>
<td>59.7</td>
<td>26</td>
<td>36.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1146</td>
<td>184</td>
<td>24</td>
<td>13.0</td>
<td>97</td>
<td>52.7</td>
<td>60</td>
<td>32.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1147</td>
<td>904</td>
<td>688</td>
<td>76.1</td>
<td>195</td>
<td>21.6</td>
<td>14</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1148</td>
<td>100</td>
<td>8</td>
<td>8.0</td>
<td>60</td>
<td>60.0</td>
<td>29</td>
<td>29.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1149</td>
<td>48</td>
<td>17</td>
<td>35.4</td>
<td>23</td>
<td>47.9</td>
<td>7</td>
<td>14.6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

of which were female. The estimated height of the skeleton falls within the stature range calculated there by Wells of 1.475m to 1.698m. At least 42 of the individuals in the cemetery displayed dental enamel hypoplasia defects similar to those found in this burial. The main teeth to be affected were the canines and the second molars, suggesting nutritional stress between two and four years of age.

Cremated human bone by Teresa Gilmore

Methodology

The cremation burials were retrieved from site in the form of bulk soil samples. The samples were wet-sieved using a 1mm sieve and the cremated remains weighed and separated into 10mm, 5mm and 2mm sieve fractions (Table 20). Each fraction was weighed and the number of identifiable fragments recorded, along with the colour and degree of fragmentation. No duplications of diagnostic bone elements were present in each of the five cremation burials. This would indicate that one individual has been interred in each burial.

Age and sex

Sex was determined on adult remains only using standard criteria. Adult age is normally assessed on the basis of the skeletal parts present, but in this assemblage only dental attrition could be used (Brothwell 1981). Pathological features were determined by macroscopic inspection, using criteria in Manchester and Roberts (1995) and Schwartz (1995). It proved difficult to determine the sex of the individuals due to the small quantities of bone present and the high degree of fragmentation. Burial C1147 was the only individual where an attempt could be made to determine sex due to the presence of a left narrow sciatic notch. However as no other key sexual dimorphic traits were present, the burial has been classified as ?Male (Tables 21–22).

Burial C1144 contained a juvenile of around four years based upon the evidence of dental development (Hillson 1996). All the other cremation burials are believed to be adults (older than 18 years of age) as only fully fused bone fragments of an adult nature were found. The cremated remains from pits 128 and 133 have been assigned an adult age (older than 18 years) based on epiphyseal fusion and the general characteristics of the bone.

Efficiency of cremation

An estimation of the efficiency of the cremation process can be gained from analysis of the colour of the cremated bone fragments (fully oxidised bone is white in appearance). Cremation efficiency is related to various factors, the most important being time, temperature and oxygen (McKinley 2000). The majority of the cremated bone was either white or light grey in colour, suggesting a high state of oxidation and a pyre temperature of over 750°C (Lyman 1994). The cremated material from pits 128 and 133 exhibits high fragmentation, with over 90% of bone being 5mm or smaller in size, and demonstrates some abrasion, suggesting a degree of residuality within the pit fills. Cremated material from Burial C1144 was not abraded but demonstrated a similar degree of fragmentation. Some fragments from C1147 and C1149 are indicative of a lower state of oxidation. Posterior bone fragments in C1147, such as vertebral neural arches, were dark grey in colour, and some bone fragments from C1149 had a white/light grey exterior but a dark grey interior, indicating a change in the oxidation level of the bone.

Weight and skeletal elements represented

The expected weight range for an adult cremation, based upon observations in modern crematoria, is in the range of c. 1000–2400g, with an average of c. 1650g (McKinley 1993). In practice on archaeological sites much smaller quantities are normally recovered, as for example at the Romano-British cemetery at Baldock, where the cremation weights were in the range of 1–1599.1g, with an average of 452g for unurned burials (McKinley 2000). The weight range for burials at this site is low at 48–904g (an average of 237g). Burial C1147 has the highest weight (904g), which is slightly
Table 21: Summary of cremation burial C1144 and other contexts containing cremated bone at Old Tetbury Road

<table>
<thead>
<tr>
<th>Burial/ Bone Group</th>
<th>Context</th>
<th>Sample no.</th>
<th>Vessels present</th>
<th>Colour of cremated bone</th>
<th>Weight (g)</th>
<th>Weight of identifiable bone (g)</th>
<th>Identifiable elements present</th>
<th>Age</th>
<th>Sex</th>
<th>Other material</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1144</td>
<td>505</td>
<td><1></td>
<td>Double-urned</td>
<td>White/ cream/ light grey</td>
<td>110</td>
<td>10</td>
<td>Petrous portion occipital crest humeral diaphysis vertebral arch 2 deciduous canine crowns 1 permanent incisor crown 3 molar crowns 1 deciduous M1 7 tooth roots 1 rib midsection long bone frags cranial vault frags</td>
<td>4 years +/- 1 year</td>
<td>?</td>
<td>?</td>
<td>Snails charcoal slag fill of external vessel</td>
</tr>
<tr>
<td>C1144</td>
<td>506</td>
<td><2></td>
<td>Double-urned</td>
<td>White/ cream</td>
<td>3</td>
<td>0</td>
<td>None</td>
<td>?</td>
<td>?</td>
<td>Charcoal pottery soil adhering to the edges of the external vessel fill of internal vessel</td>
<td></td>
</tr>
<tr>
<td>Pit 128</td>
<td>127</td>
<td></td>
<td>Un-urned</td>
<td>White/ light grey</td>
<td>12</td>
<td>1</td>
<td>Molar root incisor root long bone frags</td>
<td>Adult</td>
<td>?</td>
<td>Snails charcoal glass mouse humerus bone 1 M3 root 1 Incisor root</td>
<td></td>
</tr>
<tr>
<td>Pit 128</td>
<td>127</td>
<td><3></td>
<td>Un-urned</td>
<td>White/ grey</td>
<td>24</td>
<td>1</td>
<td>Long bone frags 1 M3 root 1 Incisor root</td>
<td>Adult</td>
<td>?</td>
<td>Snails charcoal glass pottery Snails charcoal glass</td>
<td></td>
</tr>
<tr>
<td>Pit 133</td>
<td>132</td>
<td><5></td>
<td>Un-urned</td>
<td>White/ cream/ light grey</td>
<td>42</td>
<td>2</td>
<td>Long bone frags proximal foot phalans head canine tooth root molar root</td>
<td>Adult</td>
<td>?</td>
<td>Snails charcoal pottery glass ?actually pyre debris</td>
<td></td>
</tr>
</tbody>
</table>
Table 22: Summary of cremation burials C1145–1149 at the Former Cattle Market

<table>
<thead>
<tr>
<th>Cremation burial</th>
<th>Context</th>
<th>Sample no.</th>
<th>Vessels present</th>
<th>Colour of cremated bone</th>
<th>Weight of identifiable bone (g)</th>
<th>Identifiable elements present</th>
<th>Age</th>
<th>Sex</th>
<th>Other material</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1145</td>
<td>103</td>
<td><1></td>
<td>Urned</td>
<td>White/ light grey</td>
<td>1</td>
<td>Metacarpal head</td>
<td>Adult</td>
<td>?</td>
<td>Iron nails</td>
<td>BB1 pottery</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>White/ light grey</td>
<td></td>
<td></td>
<td>> 18</td>
<td>?</td>
<td>B.B1 pottery</td>
<td></td>
</tr>
<tr>
<td>C1146</td>
<td>105</td>
<td><2></td>
<td>?un-urned</td>
<td>White/ light grey</td>
<td>7</td>
<td>Molar roots cranial vault</td>
<td>Adult</td>
<td>?</td>
<td>Snails</td>
<td>pyre debris</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>thoracic articulation facet</td>
<td></td>
<td></td>
<td>charcoal</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>small mammal bone</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>glass fragment iron nail pottery</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>iron nail pottery</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>burnt animal bone</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>local grey ware pottery</td>
<td></td>
</tr>
<tr>
<td>C1147</td>
<td>106</td>
<td><3></td>
<td>Urned</td>
<td>White/ light grey/dark grey</td>
<td>138</td>
<td>Odontoid process 5 cervical vertebrae humeral head</td>
<td>Adult</td>
<td>?M</td>
<td>Snails</td>
<td>pyre debris</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5 lumbar vertebrae frags sacral frag</td>
<td></td>
<td></td>
<td>charcoal</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 medial cuniforms sciotic notch cranial vault femoral shaft</td>
<td></td>
<td></td>
<td>small mammal bone</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1st metacarpal femoral condyles acetabulum petrous portion tibia shaft</td>
<td></td>
<td></td>
<td>glass fragment iron nail pottery</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>incisor tooth root</td>
<td></td>
<td></td>
<td>iron nail</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>burnt animal bone</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>local grey ware pottery</td>
<td></td>
</tr>
<tr>
<td>C1148</td>
<td>114</td>
<td><5></td>
<td>?un-urned</td>
<td>Light grey/ dark grey</td>
<td>8</td>
<td>Distal femur condyles thoracic vertebral facet</td>
<td>?adult</td>
<td>?</td>
<td>Snails</td>
<td>appears to be mainly burnt animal bone</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>burnt animal bone</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>iron nails</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>pottery</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>coal</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>snails</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>burnt animal bone</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>bone hairpin</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>iron nail</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B.B1 pottery</td>
<td></td>
</tr>
<tr>
<td>C1149</td>
<td>127</td>
<td><101></td>
<td>Urned</td>
<td>White with dark grey core</td>
<td>9</td>
<td>Cranial vault thoracic vertebral frag, lumbar vertebra body</td>
<td>Adult</td>
<td>?</td>
<td>Snails</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>burnt animal bone</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>iron nails</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>pottery</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>coal</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>snails</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>burnt animal bone</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>bone hairpin</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>iron nail</td>
<td>B.B1 pottery</td>
</tr>
</tbody>
</table>
lower than the expected range for an adult individual from an archaeological site, due to the truncation of the deposit. The other burials weigh significantly less, once again a product of truncation rather than the incomplete collection of bone from the pyre site. The low bone weights recovered from the excavated half sections of pits 128 and 133 suggests that they represent a residue of small bone fragments left behind on the pyre after the larger fragments had been collected for burial elsewhere. Pits 113 and 115 did not have soil samples collected and so it is not known whether they too contained small quantities of cremated bone. As the weights of cremated bone in the burials at Oakley Cottage were not published, no easy comparison can be made between the two sites (Reece 1962).

The high degree of fragmentation resulted in few diagnostic traits being present to permit identification of specific bone elements. Of the bones identified, the majority belonged to the larger skeletal elements, mainly the cranial vault and long bone diaphysis (shafts). Smaller elements identified consisted of tooth roots, tooth crowns and phalangal fragments. Burial C1144 consisted of fragments of long bones, skull, torso and teeth. The presence of the tooth roots suggests that in this case the funeral pyre was raked to collect all the bone for burial within the pottery vessel. The presence of mainly small bones within pits 128 and 133 supports the interpretation that the pyre lay elsewhere and that the larger cremated fragments were hand collected for burial in a different location.

At the Former Cattle Market burial C1147 had the lowest amount of fragmentation, with the majority of the fragments being larger than 10mm. Most of the skeleton is present with the exception of phalanges and tooth roots. This once again suggests that the large fragments were collected by hand from the cremation pyre, leaving behind some of the small bones. The remaining four cremation burials all display a high degree of fragmentation with the majority of fragments present in the 5mm sieve fraction. Burials C1146, C1148 and C1149 appear to demonstrate some evidence of deliberate layering of body elements. Burials C1146 and C1149 consist of elements mainly from the upper body, with skull, vertebra and teeth fragments being present, whilst C1148 contains elements from the lower body such as femora and vertebra fragments. Burial C1145 has so few recognisable fragments and such a low weight that no conclusions can be made about the deliberate selection of elements for burial. No pathology was noted on any of the fragments of cremated bone, probably a consequence of the highly fragmented nature of the cremated bone and incomplete skeletal recovery.

Animal remains

Burnt animal bone was recovered as follows: the hind limb of an immature sheep/goat from burial C1147, juvenile sheep bones within C1148, a bird bone from C1150 and four sheep-sized fragments with the cremated material in pit 128. The sheep bone suggests that a leg of lamb was placed onto the pyre along with the body for the funerary rite. Pyre offerings of a leg of lamb are frequently encountered as part of the Roman funerary rite, and at Oakley Cottage five out of the 45 cremation burials had burnt animal bone present (Reece 1962, 65; Philpott 1991, 196-7; Sidell and Reilly 1998). The lamb remains appear to be less calcined than the associated human bone, suggesting that the joint of meat was placed towards the edge of the pyre where the temperature was less than that in the centre. Part of a mouse humerus was found within pit 128, but this is likely to be intrusive and not part of a funerary offering.

Cremation burial C1150 by AnnSofie Witkin

A sufficient quantity of burnt bone was recovered from the inside of the fragmented vessel and from the fills of the pit to merit full osteological and palaeopathological analysis (Table 23). The cremation consisted of an adult individual of unknown sex. Investigation of the burial ritual concludes that there was no preference in the selection of bone put in the urn for burial. Cremated animal bone and copper-alloy objects were also found with the cremation indicating that these had been present on the pyre.

The cremation burial was subjected to 100% recovery as a whole-earth sample which was subsequently wet sieved. Material from the <2mm fraction was not sorted from the soil residue and was retained en masse. Most of the cremated bone was in good condition, although a few fragments were slightly abraded. This may be due to erosion from acid solution passing through the burial medium. The truncation of the cremation pit may also have contributed to the abrasion of bone fragments.

Table 23: Summary of cremation burial C1150 at the Former Cattle Market (excluding unsorted residues)

<table>
<thead>
<tr>
<th>Context</th>
<th>Age</th>
<th>Sex</th>
<th>Weight (g) of bone recovered</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1150</td>
<td>20–30 years</td>
<td>Unknown</td>
<td>Skull</td>
</tr>
<tr>
<td>(609/613/614)</td>
<td></td>
<td></td>
<td>24</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>
Osteological procedures

The cremated bone from each context was passed through a sieve stack of 10, 5 and 2mm mesh size. The bones from each sieve were weighed and calculated as a percentage of the total weight of the cremation. This allowed the degree of fragmentation to be calculated, which may indicate if the cremated bones had been further processed after the body was burnt. In each of the sieved groups the bones were examined in detail and sorted into identifiable bone groups, which were defined as skull (including mandible and dentition), axial (clavicle, scapula, ribs, vertebra and pelvic elements), upper limb and lower limb. This may elucidate any deliberate bias in the skeletal elements present. In cremations, the upper limbs were easier to identify than other bones. This is a factor which needs to be considered when analysing cremation burials. The estimation of age of a cremated individual is dependent upon the survival of particular skeletal elements indicative of age. In cremations of adult individuals, cranial suture closure (Meindl and Lovejoy 1985), degenerative changes to the auricular surface (Lovejoy et al. 1985) and pubic symphysis (Suchey and Brooks 1990) may be used as a general guide.

Age, sex and pathology

This cremation contained the remains from one individual. It was not possible to ascertain the sex of the person since none of the sex diagnostic sites survived on any of the fragments. The individual was that of an adult since the femoral head present was fused. However, the sutures present on the cranial fragments were not closed, which suggests that this individual was aged between 20 and 30 years of age. Pathological lesions may be present on cremated bone, although the lesions seen may be fewer than one would expect from inhumation burials. The cremated bones present in a burial do not necessarily represent a complete individual and this may hamper the diagnosis of a specific disease. Woven new bone was present on three unidentified long bone fragments. This type of lesion is indicative of an infection of the outer surface of the bones and is known as periostitis. The lesion was active at the time of death.

Weight of bone, fragmentation and skeletal elements present

The total weight of this cremation (combined weight of the bones from all the contexts, excluding the small amounts present in the residues) was 487g. This is a relatively low weight and may signify selection of bones for a token deposit. However, the most likely explanation is that it is due to significant post-Roman disturbance. A total of 56.7% of the bone fragments were in the 10mm fraction, and the maximum fragment size was 51.4mm. The level of fragmentation and fragment size of the cremation is within the normal ranges observed, and there is nothing to suggest that any deliberate fragmentation of the burnt bone took place prior to burial (McKinley 1994).

Fragments from all body part groups were present. In general, more bones from the lower limbs were identified than any other body group. This was related to the fragment size since the bones of the legs are thicker and in this instance survived in larger pieces. Since bone from all areas of the skeleton was included in the burial this suggests that there was no preference in the selection of bones included in the cremation.

Animal bone

Cremated animal bone was found amongst the burnt human bones. The bones were all from a bird and only a few grams were present. The presence of animal bone in a sample is dependent upon firstly it being collected from the pyre along with the human remains, and secondly the fragments being recognised as animal and not human during analysis. Since the surviving sample sizes show that not all human bone was collected from the pyre, it is likely that not all animal bone was collected either. Moreover, some fragments of unidentified animal long bone are also likely to have been overlooked in analysis.

<table>
<thead>
<tr>
<th>Deposit type</th>
<th>Context</th>
<th>Sample no.</th>
<th>Pomoideae (apple/hawthorn)</th>
<th>Prunus (blackthorn)</th>
<th>Quercus (Oak)</th>
<th>Tilia (Lime)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pit 128</td>
<td>127</td>
<td><3></td>
<td>-</td>
<td>-</td>
<td>57h, 64s</td>
<td>9</td>
</tr>
<tr>
<td>Pit 128</td>
<td>127</td>
<td><7></td>
<td>-</td>
<td>-</td>
<td>32h, 61s</td>
<td>10</td>
</tr>
<tr>
<td>Pit 133</td>
<td>132</td>
<td><5></td>
<td>-</td>
<td>-</td>
<td>12h, 34s</td>
<td>-</td>
</tr>
<tr>
<td>C1144</td>
<td>505</td>
<td><1></td>
<td>-</td>
<td>-</td>
<td>1s, 1u</td>
<td>-</td>
</tr>
<tr>
<td>C1144</td>
<td>505</td>
<td><103></td>
<td>Insufficient charcoal for identification</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>C1144</td>
<td>506</td>
<td><2></td>
<td>-</td>
<td>-</td>
<td>5h, 10z</td>
<td>thin bark</td>
</tr>
<tr>
<td>C1146</td>
<td>105</td>
<td><2></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Charcoal associated with the cremated human bone by Rowena Gale

A small assemblage of charcoal was recovered from four deposits containing cremated human bone. Species identification was undertaken to assess the character of the wood and timber used in the construction of the cremation pyres. Although the charcoal was generally well preserved, samples 1, 2 and 103 from burial C1144 were extremely small, consisting only of fragments measuring <2mm in radial cross-section. Sample 103 was inadequate for identification. Sample 2 from the fill of pit 105 containing burial C1146, an adult, consisted of well preserved, although rather small, pieces of charcoal mostly <5mm in radial cross-section. Fragments exceeding >2mm in radial cross-section were selected for examination. The samples were prepared using standard methods (Gale and Cutler 2000). Anatomical structures were examined using incident light on a Nikon Labophot-2 compound microscope at magnifications up to x400 and matched to prepared reference slides of modern wood. When possible, the maturity of the wood was assessed (i.e. heartwood or sapwood).

Results

The taxa identified and context details are presented in Table 24. Classification follows that of *Flora Europaea* (Tutin et al. 1964–80). The anatomical structure of the charcoal was consistent with the following taxa or groups of taxa:

- Fagaceae. *Quercus* sp., oak.
- Rosaceae. Subfamilies:
 - Pomoideae, which includes *Crataegus* sp., hawthorn;
 - *Malus* sp., apple; *Prunus* sp., pear; *Sorbus* spp., rowan,
 - service tree and whitebeam. These taxa are anatomically similar.
- Tiliaceae. *Tilia* sp., lime

Burial C1144 was of a four-year-old child. Associated charcoal was very sparse. Samples 1 and 2 (the fills of the external and internal pottery vessels respectively) contained a few tiny fragments of oak (*Quercus* sp.) and blackthorn (*Prunus spinosa*). The charcoal fragments in sample 103 were too small for identification. Charcoal-rich samples 3 and 7 were collected from pit 128 which contained cremated bone from an adult. The charcoal consisted predominantly of oak heartwood and sapwood, although lime (*Tilia* sp.) was also present. Some of the oak indicated moderate to fast growth rates. Sample 5 from pit 133 which contained cremated bone from an adult also consisted predominantly of oak. A small fragment provisionally named as the hawthorn/*Sorbus* group (*Pomoideae*) was also present.

The charcoal from pit 105 containing C1146 consisted entirely of oak, predominantly sapwood. In addition, a few pieces of loose bark, about 1mm in thickness, were recorded and, although unidentified, it seems likely that these originated from the oak. Of the cremation burials found in the watching brief at the Former Cattle Market only C1146 produced significant quantities of pyre material (charcoal). It is clear from the sample examined that the pyre was constructed from oak sapwood, probably mostly fairly young branches or poles; the presence of thin fragments of loose bark supports this suggestion. The charcoal was too fragmented to assess the ages or growth rates of the trees or coppice supplying the fuel. It is difficult to correlate these results with the nails recovered, since it could be anticipated that a coffin, or structural planks, would have been more substantial, with a higher ratio of heartwood, than the juvenile poles/round-wood identified in this deposit.

Discussion

The association of human bone and charcoal in these cremation deposits implicates the charcoal as pyre fuel debris. That from pits 128 and 133 demonstrated that the pyre structures were constructed mainly from oak, using poles of sufficient maturity to include heartwood. Relatively fast growth rates were noted in some fragments suggesting the trees of origin grew in favourable conditions, such as open or managed woodland. Samples 3 and 7 from pit 128 also included lime. The lime fragments were small and it was difficult to assess the dimensions or the maturity of the wood from which they originated. While lime wood or timber may have been incorporated into the pyre structure, it is also feasible that the wood represents the remains of grave goods placed on the pyre. Traditionally lime wood has been valued for carving and for making small domestic items (Edlin 1949). Similar parameters apply to the small fragment in pit 133, tentatively named as a member of the hawthorn/*Sorbus* group. In view of the paucity of charcoal from C1144 it is not possible to comment on the structure of the pyre, other than to note the use of oak and possibly blackthorn.

An adult cremation requires about one ton of wood or timber for the stout poles of the main framework (McKinley 1994). Infill and kindling can include smallwood or some other readily combustible material. The pyre sites from which the cremated bone found at this site derived were not located, although the evidence from pits 128 and 133 suggests that oak was the preferred, or most readily available, timber. Oak heartwood provides relatively long-lasting, high calorie firewood (Edlin 1949). There was no evidence to suggest the ritual inclusion of evergreen or coniferous species, as is occasionally recorded at Roman sites. For example, yew in cremation burials at Baldock Bypass (Gale unpub. a) and the large Roman cemetery at Westhampnett (Gale 1997), and pine in several contexts in the cemetery at Site 12 on the M6 Toll Road (Gale 2008). In Roman society, as in many other cultures, evergreen species were associated with death and regeneration (Dallimore 1908; Cornish 1946; Cooper 1978).

Discussion by Neil Holbrook

The evaluation and watching brief at the Former Cattle Market have demonstrated that relatively little now survives of the Roman cemetery in this area. It is
Possible, however, to reconstruct the original topography of the site to some degree. It would appear that the ground originally rose upwards from the south side of Old Tetbury Road onto a low knoll or ridge before falling away steeply into the dry valley now buried beneath the Bristol Road. Previous work has shown that this 'bowl' was filled with up to 1.5m of clay and silt deposited by seasonal flood waters from a long absent watercourse (CE V, 8–11). As this material overlay and partially infilled the defensive ditches of the town defences, a late or post-Roman date is indicated for this process. The findings in Area B at Old Tetbury Road are useful in that they clearly demonstrate that the deposition of up to 0.9m of silt is later than Burial C1144 which dates to the late 1st or early 2nd century AD. The ground also dropped away to the south-west of the cattle market into a shallow coombe which may once have been occupied by a small watercourse which drained south-eastwards into the larger valley. To the south-west of the coombe the ground rises once more, and excavations at Old Tetbury Road have shown that this area was utilised for burial in the Flavian period. When the cattle market was constructed in 1867 the summit of the slight knoll was shaved off to make for a more level platform, leading to the discovery and destruction of numerous burials across the central part of the site. The recent work has demonstrated that burials did survive this operation in the north-east corner of the site adjacent to Old Tetbury Road, and it is likely that further burials still exist in those parts of this area which were not disturbed during the construction of the new leisure centre. These may be all that now exists of a once dense area of burial between the original line of the Fosse Way and the northern slopes of the dry valley. Miscellaneous investigations and observations during the construction and demolition of the old leisure centre in 1971 and 2006; the remodelling of Bridges Garage on the former Oakley Cottage site in 1975; and test pits within the grounds of the Social and Services Club in 2001 all produced negative results (CE II, MF5 AO9; CAT 2001a; CA 2007). The burials themselves usefully add to and validate the results obtained under extremely difficult conditions at Oakley Cottage in 1960 (Reece 1962).

At Old Tetbury Road the earliest tangible activity in Area A comprised ditched boundaries at right-angles to the line of Old Tetbury Road, which most likely overlies the original alignment of the Fosse Way. Ditch 1 ran parallel with Old Tetbury Road, but it probably does not represent a side ditch to the Fosse Way given that it was not found in Area B. Ditch 1 cut through the fill of boundary A, although it is conceivable that this relationship could have been a product of the later recutting of ditch 1, and the common alignment of boundary A and ditch 1 suggest that the Fosse Way was in existence before the commencement of Phase 2. Following the abandonment of boundary A the site was given over to burial, if indeed this was not already the case in Phase 2, pyre debris from a richly furnished Flavian cremation burial being deposited in pits inside enclosure B. While Burials C1142 and C1143 outside of enclosure B are not closely dated, a Flavian date would also not be inappropriate for C1144 in Area B. The evidence from enclosure B is important as it testifies to the earliest securely dated civilian burial so far recovered from the town. Some of the cremations discovered at Oakley Cottage, 250m nearer to the town along the line of the Fosse Way, might date to the Flavian period, but precision is not possible as they were interred in coarseware vessels with no fineware accessories (Reece 1962). Some of the cremation vessels at Oakley Cottage certainly date no earlier than the 2nd century AD. The original alignment of the Fosse Way was therefore clearly a focus for 1st and 2nd-century AD cremation burial, and Burial C1144 in Area B shows that this extended for a distance of at least 400m from the line later adopted for the town defences.

As has been noted above, recorded evidence for the deposition of pyre debris is still comparatively rare in Roman Britain, although this is surely a product of the lack of modern detailed investigation at cremation sites rather than a true absence of evidence. At Oakley Cottage, a site which we must remember was hurriedly investigated during the course of its rapid destruction, Reece (1962, 70) noted some small square pits filled with bone and charcoal which he interpreted as pyre debris. The indirect evidence of the pyre sweepings at this site indicate the wealth of this cremation burial, with at least 16 samian vessels, probably two or more amphora and at least one flagon being placed on the pyre along with items of glass and metalwork. The location of the funeral pyre and formal burial spot of the cremation evidenced by the activity in enclosure B appear to have lain beyond the limits of the current excavation area. Cremations of status in the Bath Gate cemetery are recognisable by the use of square blocks of limestone, with a hollow scooped out to take either the ashes or a pottery urn containing the ashes (CE II, 207). Conceivably the bulk of the cremated remains of the individual represented here could also have been treated in this way. At the King Harry Lane cemetery at St Albans, which dates to the first half of the 1st century AD, burials containing burnt pyre goods usually lay in central locations within small ditched burial enclosures (Stead and Rigby 1989; Niblett 1999, 401–2). Enclosure B may not have been dissimilar to these.

Ditch 1 silted up and went out of use at some stage, and wall 1, 0.75m wide, was constructed above it on a similar alignment. The recovery of a small fragment of a medieval iron spur from the infill of the construction trench might suggest a medieval date for the wall, but on general grounds this is hard to accept. The form and construction of the wall are typically Roman, and it is difficult to envisage a context for the construction of a wall of this size in this location in the medieval period. Documentary evidence shows that the land to the south-east of Old Tetbury Road was a rough thorn-covered pasture known as the Querns from before AD 1200, and there is no evidence for any construction on this area until the laying out of Querns House in 1826 (CE II, 27–30). It is therefore more likely that the spur is intrusive from the overlying post-medieval layer 106, in which case a broad date range of 2nd–4th century AD can be proposed for the construction of the wall. The function of wall 1 is debatable. It was of substantial
construction and in excess of 25m long, but the absence of any associated features suggests that it may not have been part of a building. One possibility is that the wall defined one side of a walled cemetery or precinct adjacent to the Fosse Way, and that the returns on the wall and (if present) an internal mausoleum, lay beyond the limits of the excavation. Certainly the wall did not exist within Area B. Walled cemeteries are rare but not unknown in Roman Britain (Jessup 1959). They are found predominately in the south-east of England, and are often adjacent to a road, as for instance at Colchester where a rectangular walled cemetery 11.6 × 8.2m containing cremation and inhumation burials lay 800m outside the Balkerne Gate (Hall 1944). Larger examples include Harpenden, Hertfordshire, where a precinct c. 30m square was defined by a stone wall 0.76m wide containing cremation burials surrounding a mausoleum dating to the Hadrianic period (Lowther 1936-8). A much smaller funerary monument has been found in Cirencester on the high ground on the opposite side of the former dry valley to the present excavation on the site now occupied by the Geriatric Hospital. Here a stone-walled enclosure, 6.7 by 6.4m in area, was hurriedly investigated in 1973 (see Fig. 68, 1103). Only the pitched stone foundations of the perimeter walls survived, and inside the enclosure a cremation contained within a Savernake ware jar of late 1st-
century AD date was found (CE II, MF5 B10-11 no. 1103; D11, fig. 89, no. 1103).

An alternative interpretation for wall 1 is that it supported an aqueduct which channelled water from a source on the high ground around Deer Park School north-eastwards into the Roman town. There are a number of problems with this interpretation, however, not least that no trace of any aqueduct channel or wall was found in Area B. The undated culvert found there cut into the surface of the silt which elsewhere in this part of Cirencester dates to the late or post-Roman periods (see above). The culvert is very likely post-medieval, most probably an early 19th-century feature associated with the laying out of the grounds of Querns House. In any case the culvert does not directly align with wall 1. It is also the case that no trace of a wall on this orientation has been found further to the north-east during observations at the Former Cattle Market and Oakley Cottage (including subsequent monitoring during the remodelling of Bridges Garage in 1975; Reece 1962; CE II, MF5 A09). The wall is probably also too narrow to have stood to any great height and to have supported a pipe housed in concrete (it is certainly too slight to have comfortably accommodated a stone-lined channel). Interpretation as an aqueduct is therefore considered unlikely and a precinct wall is preferred pending further evidence.
7. MISCELLANEOUS OTHER INVESTIGATIONS BEYOND THE WALLS

EVALUATION AT 157 WATERMOOR ROAD, 2000
by Neil Holbrook

A single evaluation trench, 10m long by 1.5m wide, was excavated in a small open area between 157 and 159 Watermoor Road (CAT 2000d). The site lay 120m outside of the Roman town defences and 10m to the north-east of Watermoor Road which is here assumed to overlie the course of Ermin Street (SP 0305 0114; see Fig. 17, no. 22): Natural gravel was encountered in a sondage at 103.7m AOD. It was overlaid by 0.3m of clean silty clay, most likely alluvium deposited from the river Churn (the present course of the Inner Churn lies 20m further to the north-east of the trench). Overlying the alluvium in that part of the trench nearest to Watermoor Road was a thin layer of crushed limestone and silt which may be wash from the surface of Ermin Street. This was sealed by dark brown clay-silt which was found throughout the trench. Articulated human burials were found within this layer, but it was not possible to discern individual grave cuts unless they penetrated into the underlying deposits of road wash or alluvium. The clay-silt contained fragments of

Fig. 79 Queen Elizabeth Road. Location of excavation and dry valley (1:1250)
limestone, animal bone and 15 sherds of pottery which date no earlier than the late 2nd century AD. The surface of this material was cleaned and fragments of approximately nine human inhumation burials on a variety of alignments were found. Some burials clearly cut or overlay earlier ones. None of the burials were lifted. The burials are termed B2037–45 to continue the sequence for the numbering of burials to the south of the town (CE II, 205, MF 5, C01–10). The burials were overlain by up to 0.3m of silt which seems to have been laid down in post-Roman flooding. The silt contained two fragments of post-medieval clay pipe although this might be intrusive from the overlying topsoil. No further archaeological work has occurred at this site.

The evaluation has clearly revealed a small part of the Silchester Gate cemetery. The density and intercutting of the burials and the presence of a seemingly homogeneous ‘burial earth’ in which it is almost impossible to detect individual grave cuts invite comparison with the discoveries in the Bath Gate cemetery (CE II, 100–6). The burials extend for at least 15–20m from the projected alignment of Ermin Street, over which distance the height of the underlying natural gravel fell by 0.5m. It is likely that the north-eastern limit of the cemetery was defined by the increasingly boggy nature of the ground as it approached the river.

EXCAVATION AT QUEEN ELIZABETH ROAD, 1999
by Alistair Barber, Mark Collard and Neil Holbrook

Queen Elizabeth Road lies 100m to the east of the Roman town defences, just beyond the eastern ring road (NGR: SP 0325 0147; see Fig. 17, no. 14). Trial trench evaluation in 1999 identified a series of undated pits and ditches sealed by substantial layers of colluvium (Coleman 1999). Subsequently when planning permission was granted for residential development excavation of an area of 0.95ha was required to satisfy a planning condition (CAT 2000e; Fig. 79). The geology of the site consisted of limestone cornbrash overlain by deposits of yellow-blue clay. An unpronounced but nevertheless discernible dry valley aligned north-east to south-west ran through the northern part of the site.

The earliest archaeological activity was represented by 19 fragments of prehistoric struck flint. While the assemblage is generally not diagnostic, it includes two broken blades, a utilised long flake and a finely made scraper which would fit best with an earlier Neolithic date. Ten of the flints were recovered from one discrete scatter, on the gentle north-west facing slope of the dry valley, at the base of the earliest colluvium which overlay natural. Several scattered, truncated, shallow pits and ditches cut into the natural clay. They did not form any coherent plan and did not produce any dating evidence, so it is unclear whether they had any association with the flint scatter. The presence of small fragments of fired clay within the pit fills, perhaps derived from an oven or a wattle and daub building, could suggest the presence of some form of structure within the vicinity of the excavation.

A silty-clay colluvium accumulated within the dry valley, sealing the earliest features. It yielded two sherds of Romano-British pottery and three fragments of tile. The slender dating evidence suggests that the colluvium accumulated during or after the early 2nd century AD. A rough metalled surface composed of small sub-angular pieces of limestone was set into the upper surface of the colluvium. It lay on the edge of the excavation trench and its full extent was not revealed. One residual worked flint, two small fragments of abraded Roman tile and three sherds of heavily abraded Romano-British pottery were recovered from the metalling. Although it cannot be entirely discounted that the Roman material is residual, a date for the construction of the surface during or soon after the early 2nd century AD is possible.

A further deposit of hillwash subsequently accumulated within the dry valley in the northern part of the site, sealing the metalled surface. This colluvium yielded one Roman sherd in its lower horizon but solely post-medieval material in its upper levels. Two post-medieval stone trackways depicted on the 1875 Ordnance Survey map overlay the later colluvium.

While unspectacular the results of this excavation are of some interest. The flint scatter adds to the evidence for earlier prehistoric activity on the eastern margins of the Churn valley near Cirencester, as exemplified by the middle Bronze Age enclosure examined at The Beeches 700m to the north-east of this site (Young 2001; Yates 2007, 40–1). The colluvium that accumulated in the dry valley is likely to date to the Iron Age or early Romano-British period, and presumably testifies to ploughing further up slope at this time. The general absence of Roman remains, save for a few possible features, suggests that this area immediately beyond the town defences was primarily agricultural land at this time, as has been suggested by investigations on neighbouring sites. Cropmarks representing later prehistoric or Romano-British enclosures and linear ditches have been recorded over an area of 5ha at Kingshill, 500m to the south-east of the Queen Elizabeth Road (RCHME 1976; 95, Preston 1; Leech 1977, map 1). A small portion of the cropmark complex was examined by excavation in advance of the construction of the eastern ring road in 1974, revealing a series of linear features containing exclusively Romano-British pottery (Reece 1990, 39–44). Further excavation in 1977 revealed palisade-slots and ditched boundaries of a farmstead occupied in the 1st and 2nd centuries AD. The settlement remains were sealed by a stone-free plough-soil which contained 4th-century AD pottery. Further evidence for the farmstead was detected in geophysical survey and trial trench evaluation undertaken by Archaeology South-East in 2006. This found that the focus of occupation appears to lie 250m south of Queen Elizabeth Road (Hart and Collings 2006). Further features which are probably associated with this early Roman activity were found immediately west of the ring road during evaluation by CA in 1993 (Barber 1993).
OBSERVATIONS AT
STRATTON WATERMEADOWS, 2003
by Neil Holbrook

Recording was undertaken by CA in 2003 during groundworks associated with essential repairs on the sewer system in and around Cirencester town centre (CA 2003b). In all 25 mechanically excavated trial pits were observed, which varied considerably in size, shape, and depth but were generally c. 2 m square. Seventeen of these trial pits lay in various roads within the town itself, and in every case archaeological deposits had been disturbed to a depth of at least 2.5 m by existing sewer works. Eight trial pits were dug to the north of the town in watermeadows bordering the river Churn, and one of these (trial pit 4) contained archaeological remains which pre-dated ridge and furrow earthworks. In all eight excavations the natural substrate of calcareous gravels was encountered at an average depth of 0.4 m below present ground level. This was overlain by mid brown silty clay subsoil averaging 0.25 m in thickness, which was in turn sealed by 0.15 m of dark brown highly organic topsoil. However, the depths of the subsoil and topsoil varied considerably across the field. Trial pits situated in lower-lying ground which sloped south-eastwards towards the river had thicker layers of subsoil, presumably a result of alluviation. Trial pits on higher ground (including trial pit 4) had significantly less subsoil but a greater thickness of topsoil. Within trial pit 4 (SP 0183 0304), 600 m to the north-west of the Roman town defences and 100 m to the north-east of Ermin Street, two intercutting pits were found (420 and 414) (Fig. 80). The sewer pipe trench had cut through the pits effectively bisecting them. Pit 420 was 2.3 m deep. Its south-west side was nearly vertical, while to the north-east it had a more gentle concave profile. It contained four main fills (419, 418, 417, 416), all of which contained animal bone and late Iron Age/early Roman pottery. Fills 416, 418 and 419 were a mixture of gravels and sand, but 417 was a lens of charcoal-rich silty clay. Slumping of the sides suggests that the pit was left open and slowly infilled, rather than being rapidly backfilled.

Pit 420 was cut by a second pit, 414, 1.7 m deep, with steeply sloping concave sides, and a wide concave base. A thick charcoal-rich layer 415/423 formed the primary fill. This contained quantities of pottery, animal and fish bone, cremated/burnt bone, charred seeds and plant remains, shell, slag, burnt flint, a fragment of a probable iron brooch and ten possible foetal/neonatal bones. This fill was overlain by sands and gravels 410, 412, 411, mixed with re-deposited natural gravel 413, which yielded 17 fragments of animal bone. Above this was a burnt red clay 409 containing further fragments of animal bone beneath mixed gravels and sands 408 and 410 which contained a dump of white clay 407. These fills were cut by a medieval or later furrow 404. Unlike the other pit, pit 414 appears to have been quickly and deliberately backfilled.

The finds by E.R. McSloy

Pottery

A total of 95 sherds was recovered (3.14 kg) from the fills of pits 420 and 414 (Table 25). A pre-Flavian date (c. AD 50–70) is probable for this group. The condition of the pottery is good with little abrasion apparent and the average sherd weight is high at 33g.

There are ten sherds of handmade Iron Age pottery. Most are of a fairly coarse limestone-tempered fabric, typical of the late Iron Age in this region and
corresponding to Cirencester fabric TF B. Further material in a harder-fired limestone and quartz-tempered fabric includes typically late Iron Age forms consisting of a round-shouldered bowl with bead rim and a small globular jar with bead rim. The bulk of the assemblage is made up of a grotted/argillaceous tempered fabric. Voids and black coloured streaks in the fabric indicate the presence of organic inclusions. This fabric is generally fine and soft, with a soapy feel and most often fired to a light brown or grey. Forms, all of which are wheel-thrown, include a curved-rim jar, an everted-rim jar or beaker and four or five platters of a devolved Gallo-Belgic form. A finer version of the fabric, which is fired to a pale orange colour, includes a small vessel (?beaker) with short pedestal base and a small jar/beaker with an everted rim. Savernake-type wares constitute the second most commonly occurring type. The fabric is typically hard, grey or grey/brown firing and liberally tempered with coarse grog and in rare instances flint. Forms are restricted to large necked storage jars, one of which features burnished 'zig-zag' decoration to the shoulder. Other types present include single sherds of Romanising coarse quartz-tempered fabric (a platter), a white-slipped buff flagon fabric and a single small chip of South Gaulish samian. Of particular interest are sherds almost certainly from a Catalan amphora of collared board or lattice design, and a grog-jargillaceous sherd from 415 with scratched chequerboard decoration to the shoulder. A fragmentary iron object from fill 415 of pit 420 is almost certainly a portion of the bow and spring attachment of an iron brooch. The form is unclassifiable but most likely to date to the middle of the 1st century AD.

The environmental samples

Two bulk samples were taken from the charcoal-rich primary fill of pit 420 to assess the presence of biological remains. One 20-litre sample was collected from fill 415 and one 10-litre sample from fill 423. Ten litres of each sample was processed by flotation utilising meshes of 250 and 500 microns for the flot and residue respectively. The dried flots were scanned under a low power binocular microscope for charred plant remains, molluscs and artefacts. The sample from fill 415 contained 35 sherds of pottery and fired clay (31g); 75 fragments of large mammal bone (41g); 20 fragments of small mammal bone (<1g); 10 possible foetal/neonatal bones (3g); a quantity of cremated/burnt bone (17g); 1 fish vertebrae (<1g); a quantity of charcoal (8g); 4 fragments of charred plant remains (<1g); 2 fragments of burnt flint (<1g); 7 fragments from an iron object (1g) and 1 fragment of a copper-alloy object (<1g). The sample from fill 423 contained 19 sherds of pottery (45g); 75 fragments of large mammal bone (58g); 23 fragments of small mammal bone (<1g); cremated/burnt bone (40g); charcoal (23g); 10 charred seeds (<1g); 18 fragments of plant remains (>1g); 1 fragment of shell (>1g); 8 fragments from iron objects (4g) and 2 fragments of slag (>1g). This basic analysis indicates that the pit fill was rich in biological remains.
Discussion

The discovery of the two intercutting late Iron Age/early Roman pits in an area where archaeological remains have not previously been recorded is noteworthy. The size and shape of pit 420 suggest that it was originally dug to quarry gravel and that it was backfilled with domestic refuse. The similarities in the pottery finds between the two pits suggest that pit 414 was dug not long after the filling of pit 420. The refuse contained in the pits presumably derives from nearby occupation, and the pottery indicates that this is likely to have been contemporary with that found at Bagendon (Clifford 1961). To date little archaeological work has been done in Stratton, especially in the areas which lie immediately above the floodplain of the Churn. This chance discovery suggests that further investigation of the watermeadows, in particular by geophysical survey, might be worthwhile. It is now clear that late pre-Roman Iron Age activity was not solely restricted to the area of the Bagendon dykes, but was more extensive taking in a variety of other sites such as the hillfort at Ditches (Trow 1988), the rectilinear enclosures at Middle Duntisbourne and Duntisbourne Grove (Mudd 1999, 77–97), and now conceivably a further occupation area at Stratton (Moore 2006, 148–9; Holbrook 2008).
The investigations reported in this volume demonstrate the steady accumulation of knowledge about the Roman town over the last ten years. Whilst the results may seem in some ways unspectacular compared to previous work, taken in aggregate it is possible to draw some general conclusions from them.

In 1998 a first attempt was made to map the pre-Roman topography and hydrology of Cirencester (CE V, 8–11), and the conclusions drawn there have been largely supported by more recent work. It is now clear that the river Churn was originally braided into two channels on the site adopted for the Roman town, with a slightly higher gravel island lying between. Further evidence for the eastern channel has been found at a couple of locations. At the Waterloo Car Park (see Fig. 17, no. 20) archaeological and geotechnical evaluation in 1998 detected a channel which was c. 1m deep filled with silty alluvial clay which spread beyond its edge (Coleman 1998). The silt was covered by a 50mm-thick layer of clay containing frequent organic inclusions including fragments of decayed wood and leaves. This was sealed beneath a late Roman consolidation deposit which was overlaid by further alluvial deposits, suggesting renewed flooding in the late or post-Roman period. A similar sequence was also recognised in evaluation at 57 Purley Road in 1994 (Fig. 17, no. 13; Ings 1994). Here early Roman occupation was sealed by a build-up of mixed clays containing possible turf lines suggesting a lengthy period of abandonment. The area doubtless remained seasonally wet, and attempts at ground consolidation are represented by a layer of rubble containing 3rd or 4th-century AD pottery. At the Grammar School Field (Fig. 17, no. 9) evaluation in 1988 found alluvial clay containing flecks of brick and tile which probably relates to early Roman reclamation of the flood plain prior to construction of a stone building (p. 92). In the northern part of the town at Coxwell Street Peter Grace recorded a 1m-thickness of silty clay above natural gravels in 1969, which corresponds with previous discoveries in this area (Fig. 17, no. 7; Brown and McWhirr 1967, 195). Deep deposits of silty alluvial clay infilling the western channel were observed in geotechnical works at the Corinium Museum in 2001 and at Trinity Road where saturated running gravels were found (Fig. 17, nos 5 and 18; CAT 2001b; p. 93). The excavation at Steptstairs Lane in the southern part of the town lay just beyond the river channel, but there were evidently problems with flooding there (Fig. 17, no. 16; p. 83). Dumped deposits were laid down to raise the ground level in preparation for the construction of a building, and a series of short-lived ditches which fell out of use in the early 2nd century AD were dug to further drain the site. To the south-west of the town a shallow subsidiary valley which ran into the valley of the Churn has been found, defined to the south by the limestone ridge of the Querns and to the north by the line of Old Tetbury Road and Cirencester Park. It is now largely overlain by the A419 Bristol Road. The valley became choked with sediment laid down by seasonal flood waters in the late or post-Roman periods. One source of this water might have been a small stream which drained southwards into the valley from the area now occupied by the lake within Cirencester Park (p. 116).

The wet, boggy nature of much of the ground later to be enclosed within the walls of Cirencester is now apparent, and Reece (2003) has sought to explain this choice of an outwardly unpromising site as a consequence of a desire on the part of the Roman road surveyors to avoid a putative late Iron Age ritual centre on the rising ground to the north-east of the town. Certainly no trace of prehistoric settlement has been found in any of the excavations within Cirencester, in contrast to recent work to the east of the town. At The Beeches a middle Bronze Age ditched enclosure has been excavated, while at Kingshill evaluation has revealed Bronze Age ring ditches and suggestions of an Iron Age enclosure (Young 2001; Oxford Archaeology 2006b; Yates 2007, 40–1). No evidence of late pre-Roman Iron Age activity has been found in this work, although the discovery of a rectilinear cropmark enclosure adjacent to Tar Barrow is of interest (Holbrook 2008). One interpretation of this monument is that it represents a late Iron Age cremation enclosure, and that the barrows might be of similar date. Further work will be required to substantiate or disprove this theory, and it is encouraging that Dr Peter Guest of Cardiff University is now undertaking a detailed geophysical survey of this area. A single late Iron Age pit was recorded in a watching brief during sewer renewal in Stratton watermeadows on the west side of the river Churn, 600m north-east of the Roman town. The artefacts contained in the pit are likely to derive from nearby, but as yet unlocated, settlement and suggest another focus of activity contemporary with that at Bagendon.

Nothing has been found in the recent excavations to further our understanding of the Roman military
occupation, unless the road discovered beneath the rampart of the town defences at Trinity Road dates to this period. The road fell out of use during the Flavian period, and can be added to other observations of short lengths of metalled streets and fragmentary traces of timber buildings which pre-date the laying out of the main street grid of the town. A street beneath the courtyard of the forum was associated with pre-Flavian and Flavian pottery, while another was found at Watermoor Hospital to the rear of an earthen rampart. It was seemingly on a different alignment to that at Trinity Road 90m to the north-west, and pottery from the infilling of the side ditch and overlying its street surface is datable to c. AD 75–85 (CE I, 60–4). Like Trinity Road a length of this street was subsequently buried beneath the rampart of the 2nd-century AD town defences. These three sightings demonstrate the existence of some form of street system within the southern part of Cirencester in the early Flavian period which extended further to the west than the area subsequently enclosed by the defences. This is vital evidence for the period immediately following the abandonment of Cirencester by the military, for Flavian deposits are still remarkably rare in the town. Even allowing for the comparatively few investigations of the earliest levels, where this has occurred it is virtually impossible to demonstrate a Flavian origin for any building which was to form part of the 2nd-century AD town. A large Flavian pit and stone-lined drain were found beneath later town houses at Parsonage Field, and the make-up layers beneath the building at Steptairs Lane date to the Flavian–Trajanic periods (CE I, 64, 193–4, site AX; Richardson 1962, 160; p. 70). It would therefore appear that further evidence for the earliest civilian occupation of Cirencester should be sought in the Watermoor area. We may also note evidence from Old Tetbury Road for a richly appointed Flavian cremation burial (see below). The evidence from the excavation of public buildings, shops and houses combines to demonstrate that the main infrastructure of the town was not laid out until the first two decades or so of the 2nd century AD (CE V). It may also have been at this time that the town was first equipped with earthwork defences, to judge from a rampart bank which has been discovered at two places in Watermoor which pre-dates the main circuit of the earthwork defences built c. AD 140–60 (CE V, 94–6). The picture gained is therefore of the slow development of urban infrastructure in the later 1st century AD, although the Flavian streets and other features in Watermoor hint at some form of urban activity which was replaced by a town designed to a different plan in the early 2nd century A.D. The form and layout of this early ‘proto-town’ can hardly be comprehended at present (Holbrook 2008).

Observations and investigations of the streets are improving our understanding of the basic layout of the 2nd-century AD town. The discovery of colonnaded porticos flanking either side of Ermian Street at the Bingham Hall and the Foresters Arms is notable. It would now appear that at least 750m of this street may have been so equipped (CE V, 23). The earliest colonnades date to the early Antonine period, but were reconstructed on a number of occasions, and the portico at the Police Station seems not to date before the later 3rd century AD (Wacher 1963, 19–22, fig. 4). There is no evidence that the Fosse Way frontages were provided with a similar level of monumentalisation (no portico was present at 33 Querns Lane for instance; Fig. 19, B.5), which suggests that Ermian Street was always the more significant and prestigious route through the town. The construction of the porticos, if a unified event, can be seen as another element in the 2nd-century AD aggrandisement of Corinium.

Relatively little new information has been forthcoming on the public buildings. The work at the forum has added a few details to the plan of that complex, while the discoveries at Cotswold Mill are tantalising. Masonry walls survived 16 courses high, but little can be deduced of the building plan in this part of the insula. It nevertheless remains likely that the walls were part of a public building, most probably the public baths. The new evidence for private houses and other types of buildings is also relatively slender, although the discovery of another richly appointed house furnished with mosaics in insula IX is welcome. Further work on the defences at Trinity Road serves to demonstrate just how complex their sequence and development was, and the difficulties of interpretation generated by narrow cuttings (cf. Wacher 1998). It is conceivable that we may have evidence of an abortive construction trench for the masonry wall, which was subsequently built on a slightly different alignment, although unfortunately this interpretation must remain unconfirmed for the time being.

Beyond the walls excavation at Queen Elizabeth Road and evaluation at Kingshill by other archaeological organisations confirms that there was no significant suburban extra-mural activity on this side of the town, and all the evidence points to a rural landscape extending right up to the town defences (p. 133; Oxford Archaeology 2006b). Further traces of a 1st and 2nd-century AD farmstead previously investigated in advance of the construction of Cirencester ring road have been recovered in one of the recent evaluations (Reece 1990, 39–44; Hart and Collings 2006). Whether the origins of this site lie before or after the commencement of Roman activity (military or civilian) in Cirencester is currently unclear. By the later Roman period the farmstead had been abandoned and its site given over to arable to judge from the results of the ring road excavation. Some 3km to the north-east of Cirencester another site, possibly a villa, has recently been recognised from a surface scatter at Wiggold Farm. Artefacts recovered include building tile and pottery which dates exclusively to the 1st and 2nd centuries AD. Investigation of this site by Bournemouth University is planned.

While opportunities to excavate extensive areas of the Roman town have not been available in the last ten years, resources have been found to study some individual deposits in detail which has not previously been possible. Work in the western cemetery along Old Tetbury Road has revealed both cremation and inhumation burials. Particularly noteworthy has been the identification of pits containing fragments of
human bone and heat-affected artefacts set within a small ditched enclosure. These deposits are most plausibly interpreted as sweepings of the residue of a funeral pyre after the bulk of cremated bone had been removed for burial elsewhere. The artefacts suggest that the cremation was richly appointed and of Flavian date. This evidence, albeit indirect, testifies to the earliest securely dated civilian burial so far recovered from the town, and the burial joins the tradition of wealthy cremations found elsewhere in Britain in the 1st century AD (Phillpott 1991, 30-43). The individual must have been a significant member of the first generation of Cirencester townspeople. Many of the other burials investigated proved to be truncated or otherwise disturbed, which has served to reduce their potential for analysis. Nevertheless they add to the assemblages previously reported from the town (Reece 1962; CE II). The lack of ordered planning, so apparent at the Bath Gate cemetery, is also evident in the disposition of the surviving burials at the Former Cattle Market.

The last decade has also seen the widespread and routine application of environmental sampling, both during evaluations and excavations. Despite this work, the environmental record for Cirencester remains patchy. Animal bones are the best studied category of ecofact due to the synthesis published by Mark Maltby in CE V. The further deposits of bone from Stepstairs Lane and Trinity Road reported on by Hambledon usefully add to that work, but do not change its essential conclusions. Palaeobotanical studies have to date been a great weakness in the archaeological record of the town (Van der Veen et al. 2007, table 2), and it is pleasing that this volume contains a number of such studies. Analyses of the charred plant remains within a late Roman oven at Stepstairs Lane have shown that it was filled entirely with bread wheat. This is useful, as the chronology of the rise to dominance of naked bread-type wheat over hulled wheats such as emmer and spelt during the 1st millennium AD is still poorly understood (Van der Veen 1994, 205). There is no reason to question the late Roman date of the Stepstairs deposit, however, as while bread wheat is usually the principal form of cereal in post-Roman assemblages, it does occur in reasonable quantities in some late Roman assemblages in southern Britain, including Barton Court Farm in the Upper Thames Valley (Jones 1986, although cf. Campbell and Straker 2003 who suggest that some of the material there may have been wrongly assigned). Analysis of charcoal contained in the cremation-related deposits along Old Tetbury Road has also provided valuable insights into the timber used for the funeral pyre. Despite these advances more work remains to be done on palaeobotany in Cirencester, especially given the potential for waterlogged deposits in and around the relict channels of the river Churn. The recovery and analysis of good assemblages of molluscs and insect fauna that will assist with the reconstruction of environmental conditions should be a priority for the future.

If the last ten years are anything to go by there is every reason to believe that the steady accumulation of knowledge about the Roman and later town will continue in the coming decades, and we should also expect some surprises. Developments to renovate or replace building stock erected in the 1960s and 1970s which has not withstood the test of time are currently being planned, and whilst preservation in situ of archaeological remains will continue to be the policy objective, opportunities for investigative fieldwork will surely accrue. Resources will also be available to investigate the north-eastern approaches to the town. At the time of writing extensive excavations are just commencing in advance of major housing developments at Kingshill. To judge from the results of the preliminary evaluations these will provide information on the prehistoric occupation of this part of the Churn valley, and provide an opportunity to fully excavate an early Roman farmstead. It will be instructive to ascertain what effect proximity to the town had on the economy and material culture of this site compared to farms further away in the Upper Thames valley and Cotswold uplands. It is also heartening that the eastern periphery of Cirencester is now the focus for two campaigns of research-driven fieldwork. The multi-period archaeological landscape at Wiggold Farm in the parish of Preston is being investigated by Professor Timothy Darvill of Bournemouth University, while the work around Tar Barrows has already been mentioned. Integration of the results of these pieces of work with the results of development-led investigations promises much.
BIBLIOGRAPHY

Baddley, W. St. Clair 1924 A history of Cirencester Cirencester, Cirencester Newspaper Company
Barber, A. 1993 Proposed tree-planting scheme, City Bank, Cirencester. Archaeological evaluation Cotswold Archaeological Trust typescript report 93121
Barker, J. 1976 'William and Rebecca George (Powell) and their town house, now Gloucester House, 60 Dyer Street', in McWhirr 1976, 113–125
Bathurst, W. H. 1879 Roman antiquities at Lydney Park, Gloucestershire, London, Longmans
Beecham, K. J. 1887 History of Cirencester (reprint 1978), Dursley, Alan Sutton
Bewley, R. and Fulford, M. 1996 'Aerial photography and the plan of Silchester (Calleva Atrebatum)', Britannia 27, 387–8
Bray, N. 1998 The Cirencester branch Usk, Oakwood Press
Buckman, J. and Newmarch, C. H. 1850 Illustrations on the remains of Roman art in Cirencester, the site of ancient Corinium London, George Bell
Butcher, S. A. 2001 'Brooches of copper alloy', in Anderson et al. 2001, 41–69
CA (Cotswold Archaeology) 2002 33 Querrors Lane, Cirencester, Gloucestershire, watching brief CA typescript report 02013
CA (Cotswold Archaeology) 2003a Land off School Lane and Stairs Lane, Cirencester, Gloucestershire. Archaeological evaluation CA typescript report 03158
CA (Cotswold Archaeology) 2003b Thames Water repairs to public sewers, Cirencester, Gloucestershire. Programme of archaeological recording CA typescript report 03140
CA (Cotswold Archaeology) 2004 Forester's Arms, Queen Street, Cirencester, Gloucestershire. Archaeological evaluation CA typescript report 04002
CA (Cotswold Archaeology) 2005 Land to the rear of 3, 5, SA and 7 Ashcroft Road, Cirencester, Gloucestershire. Archaeological evaluation CA typescript report 05090
CA (Cotswold Archaeology) 2007 St James's Place, Cirencester, Gloucestershire. Archaeological watching brief CA typescript report 07029
CAT (Cotswold Archaeological Trust) 1997 Royal Cinema, Lewis Lane, Cirencester, archaeological evaluation CAT typescript report 97885
CAT (Cotswold Archaeological Trust) 1999 26 Watermoor Road, Cirencester, Gloucestershire. Archaeological watching brief CAT typescript report 991111
CAT (Cotswold Archaeological Trust) 2000a 23 Victoria Road, Cirencester, Gloucestershire. Archaeological evaluation CAT typescript report 001174
CAT (Cotswold Archaeological Trust) 2000b 52–54 Ashcroft Road, Cirencester, Gloucestershire. Archaeological watching brief CAT typescript report 001200
CAT (Cotswold Archaeological Trust) 2000c Land at School Lane/Steps Lane, Cirencester, Gloucestershire: Archaeological evaluation CAT typescript report 001223
CAT (Cotswold Archaeological Trust) 2000d Land adjacent to
Hall, L.J. 1983. The rural houses of North Avon and South Gloucestershire 1400–1720. City of Bristol Museum Art Gallery Mon. 6, Bristol, City of Bristol Museum and Art Gallery

Hanf, M. 1983. 'Weeds and their seedlings Ipswich', B.A.S.F.

Hart, D. and Collings, M. 2006. An archaeological evaluation at Kingshill South, Cirencester, Gloucestershire Archaeology South-East timespan report

Harvad, T. 2009. 'Axe and the model of a villa estate' and 'Towards the model of a villa estate' in D. Miles (ed.) Archaeology at Barton Court Farm, Abingdon, Oxford CRAAGS Res. Pap. 50, London, Council for British Archaeology, 38–42 and MPF

Kingsley, N. 1989. The country houses of Gloucestershire, volume 1, 1500–1600 Cheltenham, N. Kingsley

Lawson, A.J. 1976. 'Shale and jet objects from Silchester', Archaeol. 105, 241–75

Leech, R.H. 1977. 'The upper Thames valley in Gloucestershire and Wiltshire', CRAAGS Survey 4, Bristol, Committee for Rescue Archaeology in Avon, Gloucestershire and Somerset

Leech, R.H. 1981. 'Historic town in Gloucestershire: Archaeology and planning CRAAGS Survey 3, Bristol, Committee for Rescue Archaeology in Avon, Gloucestershire and Somerset

MacGregor, A. 1985. Bone, antler, ivory and horn: The technology of skeletal materials since the Roman period Beckenham, Croom Helm

McKinley, J.L. 1993. 'Bone fragment size and weights of bone from modern British cremations and their implications for
the interpretation of archaeological cremations', Int. J. Osteoarchaeol. 3, 283–7
McKinley, J.L. 1994 'The Anglo-Saxon cemetery at Spong Hill, North Elmham. Part VIII: The cremations', *Anglian Archaeol. 69, 78–120
McKinley, J.L. 1997 'The cremated and inhumed human bone from burial and cremation-related contexts', in Fitzpatrick 1997, 55–74 and 244–53
McKinley, J.L. 2000 'Cremation burials' in Barber and Bowsher 2000, 264–77
McWhirr, A.D. 1988 'Girenecaster's contribution to the development of urban archaeology', *Cirencester Miscellany* 1, 11–16
Mowl, T. 2002 *Historic Gardens of Gloucestershire Stroud, Tempus
Mudd, A., Williams, R.J. and Lupton, A. 1999 *Excavations alongside Roman Ermin Street, Gloucestershire and Wiltshire*, *The archaeology of the AA15/A157 Swindon to Gloucester Road Scheme Oxford, Oxford Archaeological Unit
Murphy, P. 1976 *Fruits and seeds from Roman deposits at Lechlade* Unpublished Ancient Monuments Lab. report 2112
Niblett, R. 1999 'The excavation of a ceremonial site at Folly Lane, *Verulamium Britannia Monograph 14*, London, Society for the Promotion of Roman Studies
Oxford Archaeology 2002a *The cinema site, Lewis Lane, Cirencester, Gloucestershire: Archaeological impact assessment and strategy for monitoring and mitigation of proposed development* Unpublished report
Oxford Archaeology 2002b *The Angel Cinema site, Lewis Lane, Cirencester, Gloucestershire: Archaeological evaluation* Unpublished report
Oxford Archaeology 2002c *The cinema site, Lewis Lane, Cirencester, Gloucestershire: Archaeological evaluation*. Test pits 11, 12, 13 and 14 Unpublished report
Oxford Archaeology 2002d *Evaluation at Cinderurst Cattle Market and Leisure Centre car park* Unpublished report
Peacock, D.P.S. and Williams, D.F. 1986 *Amphorae and the Roman economy Harlow, Longman
Reece, R. 1988 *My Roman Britain Cotswold Studies 3*, Cirencester, Cotswold Studies
Reece, R. 1990 *Excavations, surveys and records around Cirencester Cotswold Studies 2*, Cirencester, Cotswold Studies
Reece, R. 2003 'The siting of Roman Corinium', *Britannia* 34, 276–80
Rennie, D.M. 1957 'A section through the Roman defences in Watermoor recreation ground, Cirencester', *Antig. J.* 37, 206–15
Richardson, K. M. 1962 'Excavations in Parsonage Field, Watermoor Road, Cirencester, 1959', *Antig. J.* 42, 160–82
Rodwell, W. 1997 *The parish church of St John the Baptist, Cirencester: An archaeological appraisal of the fabric and fixtures* Unpublished report for Parochial Church Council of Cirencester
Sear, F. 2006 *Roman theatres: An architectural study* Oxford, Oxford University Press
Slater, T. 1976a 'The town and its region in the Anglo-Saxon and medieval period', in McWhirr 1976, 81–108
Slater, T. 1976b 'Estates ownership and nineteenth century suburban development', in McWhirr 1976, 145–57
Smith, D.J. 1975 'Roman mosaics in Britain before the fourth century', in H. Stern and M. Le Glay (eds) *La Mosaïque Gréco-Romaine II* Paris, Centre National de la Recherche Scientifique, 269–89

Swan, V. 1975 'Oare reconsidered and the origins of Savernake man in Wiltshire', *Britannia* 6, 37–61

Thomas, A. 1999 *Cotswold Mill, Lewis Lane, Cirencester, Gloucestershire. Archaeological excavation and watching brief Cotswold Archaeological Trust report* 990187

Townsend, A. 2006 Outline report on the condition of Norman Arch Cottage, Cirencester, Glos Unpublished report for the Norman Arch Group

Turner, K. 2000 *A narrow Cotswold street: Coxwell Street Cirencester*

Turner, N. 1995 *44 Blackjack Street, Cirencester: Building recording Cotswold Archaeological Trust typescript report 96/222*

Turner, N. 1996 *3 Coxwell Street and 1 Park Street, Cirencester, Gloucestershire: Building recording CAT typescript report 96/422*

Viner, D. and Viner, L. 2004 *Cirencester a century ago: The Bingham legacy Chalford, Sutton*

Webster, G. 1959 'Cirencester; Dyer Court excavation, 1957', *Trans. Bristol Gloucestershire Archaeol. Soc. 78*, 44–85

Welsford, J. 1987a *Cirencester, a history and guide Stroud, Alan Sutton

Welsford, J. 1987b *Cirencester in old photographs Stroud, Alan Sutton

Wills, J. 2006 'The view from the Gloucestershire Archaeology Service', in Holbrook and Jurica 2006, 231–35

Wood-Jones, R. 1986 *Traditional domestic architecture in the Banbury Region Banbury, Wykham Books

Young, D.E.Y. 2001 *Excavation of two prehistoric enclosures at The Beeches, London Road, Cirencester Avon Archaeological Unit unpublished report

Young, R. 1991 'Cement scorned in Gloucester Street, Cirencester', *SPAB New 12.1*, 16–18

INDEX

Entries in bold refer to the illustrations

aerial photography 31
Anglo-Saxon archaeology 10, 13
Anglo-Saxon period, the 7, 79
Antiquaries Journal 5, 10
archaeological features
demolition layers 38, 42, 43, 44, 47, 50, 51, 53, 58, 61, 64, 75, 85, 87, 92
intrusive material 68, 94, 114, 127, 130, 133
levelling layers 42, 49, 50, 70, 71, 73, 82, 92, 114, 121, 122
make-up layers 35, 42, 52, 54, 63, 65, 67, 68, 97, 110, 138
natural deposits 35, 38, 40, 43, 51, 62, 63, 68, 70, 76, 84, 93, 95, 96, 106, 107, 109, 113, 116, 132, 133, 134, 137
occupation layers 49, 61, 65, 74, 75, 79, 83, 87, 92, 102, 109
pits 38, 50, 52, 53, 63–4, 65, 66, 68, 70, 73, 75, 76, 82, 83, 87, 92, 93, 111, 113, 114, 130, 133, 134, 136, 138
refuse 73, 75, 81, 135
residual material 37, 38, 39, 54, 57, 65, 76, 77, 85, 86, 133
stratigraphic sequences 2, 9, 35, 37, 38, 40–1, 42, 43, 44, 47, 49, 50, 51, 58, 61, 73, 75, 88, 92, 97, 109–10, 116, 134
stakeholes 38
archaeological units and contractors 9, 11, 13, 14, 20, 29
archaeology
commercial 12, 13, 20, 29
community 4
condition of 47, 62, 80
dating 29, 35, 37, 38, 42–3, 65–6, 67, 68, 70, 74, 75, 76, 80, 83, 94, 95, 97–8, 100–1, 107, 108, 113, 117, 119, 133
environmental 5, 11, 66, 70, 139
loss of 2, 14, 27, 62, 130
management of 12, 25, 27
post-excavation 5, 9, 10, 11, 13
protection of 2, 11, 16, 27–9
public involvement in 5, 9
rescue 4, 7, 9, 10
urban 2, 5, 9, 12, 13, 20, 82, 105
architects 17, 18, 24–5
architectural features
porticoes 35, 37, 38, 39, 41, 61, 62, 83, 138
stoaide walls 35, 37, 38, 39, 62, 65, 67
architecture 2, 15, 16, 17, 20, 22, 25, 26, 50
polite 16, 22
vernacular 16, 22, 26
archives 11, 16, 17–18, 25, 66, 81, 103
artefacts 29, 61, 65, 67, 73, 85, 101–2, 117–19, 121, 137, 138, 139 see also metalwork
bone 75, 76, 79, 87, 102, 117, 119, 121
conservation of 28
glass 67, 70, 87, 111, 117, 118, 120, 121, 130
linch-pins 35, 40
recovery of 49, 61
toilet implements 40, 101
worked stone 59, 79, 87, 88
Atkinson, Donald 3, 10
Bagendon, Glos. 2, 135, 136, 137
Baillie-Reynolds, P.K. 2, 3
Barber, Alastair 12, 13–14
Barker, Joyce 9, 10, 18
Bath, Bath & North-East Somerset 86, 87
Bathurst family, the 1, 4, 7, 15, 17, 21
Beecham, K. J. 1, 17, 85, 87, 88
Bingham, Daniel George 17, 24
Brown, David 7, 15
Burford, Oxon. 22
burgage plots 18, 26
burials 109, 116–17, 121, 130, 132, 133, 138
cremations 109, 111, 113, 114, 116, 118–22, 124, 129, 130, 131, 139
inhumations 109, 114, 116, 122, 128, 131
Caerleon, Newport 79
Caerwent, Monmouthshire 61, 62
Caistor-by-Norwich, Norfolk 31
Canterbury 5, 9, 12, 69
Catling, Chris 9, 13, 14, 25
Catterick, N. Yorks. 5, 7
cemeteries 13, 109, 121, 124–8, 129, 130–1, 133
Ceramic Phases 29, 35, 37, 70, 97, 98, 99 see also pottery
Chalford, Glos. 22
charcoal 35, 61, 64, 65, 67, 75, 76, 79, 80–1, 87, 92, 96, 113, 117, 120, 128–9, 130, 134, 135, 139
Chester-Master, W.A. 3, 5, 15
churches 13, 14, 21, 22, 24, 25
Cirencester
Abbey 5, 7, 13, 14, 21, 24, 26
Bingham Hall and Library 17, 27
Corinium Gate 12
Corn Hall, the 14, 17, 25
development in 2, 5, 7, 11, 12, 13, 16, 19, 20, 22–3, 25, 27–8, 45, 83, 139
development of archaeology in 1–14, 29
excavations in
Admiral’s Walk 9, 10
Bath Gate cemetery 7, 10, 105, 121, 123, 130, 133, 139
The Beeches 1, 9, 10, 133, 137
Bingham Hall 28, 33, 41, 42, 43, 138
Cotswold Mill 28, 43, 62, 138
Foresters Arms 28, 40, 138
Former Cattle Market 28, 109, 114, 116, 117, 120, 121, 122, 124, 129, 131, 139
Grammar School Field 28, 44, 91
Oakley Cottage 9, 114, 119, 121, 127, 130, 131
St Michael's Field 9, 12, 43, 57, 58, 77, 105
St Michael's Park 83, 84–5
Stratton watermeadows 134, 136, 137
Waterloo Car Park 28, 44, 137
Woolmarket Car Park 44
Gloucester Gate 67
growth of 18, 19
publications on 9,

Cirencester Excavation Committee (CEC) 1, 2–5, 7, 9, 10, 11–12, 13, 14, 20, 26, 27
Cirencester Archaeological and Historical Society 2, 3, 9, 24
Cirencester Excavation Committee (CEC) 1, 2–5, 7, 9, 10, 11–12, 13, 14, 20, 26, 27
Cirencester Park 17, 21–2, 27, 116, 137

Cirencester Urban Assessment, the 45
Clifford, F. M. 2, 4
Clifton-Taylor, Alec 16, 18
coins 9, 29, 37, 38, 39, 56–8, 61, 62, 66, 74, 75, 77–8, 85, 86, 87, 88–9, 92, 97, 98, 101
Colchester, Essex 58–9, 120, 131
Committee for Rescue Archaeology in Avon
Glosashire and Somerset (CRAAGS) 10, 11
Conservation Areas 16, 24
Corbett, Philip 2, 4
Cottam (Roman town) 2, 11, 26, 27, 29, 31, 39, 40, 45, 67, 93, 95, 105, 106, 139, 137–9
ambulacrae 7, 10, 11, 23, 26
basilicas 7, 26, 56, 59, 60–2
baths 67, 138
buildings 1, 2, 3, 7, 9, 35, 37, 38, 39, 43, 44, 70, 71, 5, 83, 84, 86, 87, 90, 91, 92, 137, 138
public 5, 9, 11, 13, 45–69, 138
status of 41, 62, 87, 138
courtyard houses 58, 91, 92
courtyards 35, 37, 38, 39, 61, 67, 68, 92, 138
defences 2, 3, 13, 93–5, 97, 98, 100, 105, 106, 108, 130, 132, 133, 138
forum 27, 47, 51, 53, 56, 57, 58, 59, 60–2, 138
occupation within 7, 10, 14, 47, 49, 61, 66, 73, 92, 133, 136, 137, 138
plan of 5, 6, 7, 30–1, 87, 91, 138
shops 9, 13, 67, 83, 138
streets 1, 2, 31, 35–4, 47, 49, 51, 53–4, 60, 61, 62, 65, 70, 83, 86, 88, 92, 106, 138
theatre 67, 69
town houses 49, 67, 82
walls of 7, 26, 31, 93, 96–7, 106, 108, 137
Corinium Museum, the 1, 3, 9, 10, 11, 17, 18, 20, 27, 28, 114, 137
Cotswolds, the 1, 14, 16, 22, 25
Cotswold Archaeological Trust (CAT) 11–13, 20, 47, 48, 52, 53
Cotswold Archaeology (CA) 13–14, 27, 29, 33, 40, 62, 70, 93, 106, 114, 133, 134
Council for British Archaeology, the 2, 3, 5
croplands 133, 137
cultivation 61, 81, 97, 138
Dennell, Geoffrey 9, 29
dark earth 38, 39, 58, 61, 70, 85, 87, 88, 97
Darvill, Timothy 9, 10, 11, 12, 13, 15
dendrochronology 21, 26
ditches 5, 35, 36, 37, 38, 39, 40, 42, 43, 44, 51, 50, 70, 73–4, 83, 92, 93, 96, 97, 106, 107, 108, 110, 111, 113, 114, 130, 133, 137, 139
Dorchester, Dorset 83, 86
drainage 40, 71, 73, 74, 83, 93, 96, 105, 107, 116, 130, 137
drains 38, 48, 65, 85, 86, 88, 93, 97, 138
economic activity 1, 7, 13, 16, 25, 26, 28, 62, 139
enclosures 114, 113, 114, 120, 121, 130, 131, 133, 136, 137, 139
English Heritage 12, 13, 17, 20, 24, 29
environmental consultancy 13
excavations 2, 4–5, 7, 8, 9, 10, 11, 13, 14, 23, 25, 26, 27–9, 32, 33, 38, 40, 43, 44, 45, 47, 88, 57, 61, 62, 67, 70, 83, 84, 92, 93, 106, 107, 109, 116, 130, 133, 137, 138
emergency 2, 3, 7
listed buildings
Leicester 7
Jeffries, John, 3, 7, 10
landownership
legislation
Ancient Monuments and Archaeological Areas Act 1979
Town and Country Planning Act 1947
Leicester 7
Lincoln 4, 9, 16
listed buildings see historic buildings

London 2, 5, 9
Ludlow, Salop. 16, 27
McWhirr, Alan 7, 9, 10, 12, 13, 15, 25
markets 62, 121, 130
medieval period, the 10, 14, 18, 47, 65, 67, 68, 70, 75, 76, 79, 83, 97, 113, 114, 130, 134
metal detecting 49, 57, 62
metalling 31, 33, 35, 38, 40, 43, 44, 51, 53, 54, 67, 68, 93, 133, 138
metalwork 35, 39, 40, 58–9, 62, 70, 75, 78, 117, 121, 130
copper-alloy 35, 40, 58, 77, 78, 85, 87, 101, 111, 117, 119, 120, 127, 135
iron 35, 40, 58, 85, 113, 114, 117, 118, 119, 120, 130, 134, 135
lead 58
medieval 58
post-medieval 58
metallurgy 35
Mitchell, Glene 12, 13
modem period, the 43, 47, 52, 53, 62, 91, 106
National Monuments Record 17, 27
National Trust, the 13
Neolithic, the 133
Ordnance Survey mapping 30, 87, 133
ovens 63–4, 74, 75, 80, 81, 83, 133, 139
Oxford Archaeology (OA) 27, 29, 44, 45, 114, 122
planning 2, 11, 12, 16, 17, 18–19, 20, 24, 25, 29, 45, 106, 109, 114, 133
Planning Policy Guidance Note 15 (PPG 15) 17, 20, 25
Planning Policy Guidance Note 16 (PPG 16) 12, 13, 19–20, 27
plant remains 64, 66, 75, 79–80, 134, 135, 139
ploughing 91, 133
post-medieval period, the 18, 19, 43, 50, 56, 62, 65, 70, 76, 93, 97, 106, 110, 113, 114, 116, 122, 130, 131, 133
post-Roman archaeology 14, 18, 38–40, 43, 47–9, 50, 52, 53, 54, 57, 58, 59, 61, 66, 70, 98, 104, 128, 130, 131, 139 see also Anglo-Saxon archaeology
post-War reconstruction 1, 2
amphorae 9, 54, 55, 56, 65, 71, 74, 76, 89, 91, 98, 99, 100, 108, 114, 119, 120, 121, 122, 130, 135
coarse wares 29, 35, 37, 38, 56, 70, 71, 74, 75, 76, 77, 89, 93, 98, 99, 108, 113, 117, 120, 122, 130, 131, 135
Dorset Black-Burnished ware 37, 38, 42, 56, 65, 74, 75, 77, 83, 89, 93, 97, 98, 99, 100, 114, 119, 121
grey wares 56, 65, 71, 74, 77, 89, 98, 100, 122
Iron Age 134–5
medieval 54, 56, 65, 66, 67, 68, 76, 85, 89, 91, 98, 114, 117
mortaria 54, 56, 56, 65, 66, 76, 89, 98, 99, 100, 101
post-medieval 54, 66, 76, 86, 89, 98, 114, 117, 118, 121
samian 7, 29, 35, 37, 43, 54, 65, 70, 71, 74, 75, 77, 83, 92, 93, 97, 98, 99, 100, 106, 114, 117, 119, 120, 130, 135
Povah, Kenneth 10
prehistoric archaeology 133, 137
prehistoric occupation 2, 136, 137, 139
property boundaries 74, 84, 130
property ownership 17, 26
railways 11, 12, 16, 19, 23, 92
Reece, Richard 9, 14, 25, 44, 91, 92, 120, 130, 137
Rennie, Mary 17, 26
Richardson, Kitty 3, 5, 15
Richardson, Sarah 3, 5, 14, 15
ridge and furrow 134
Rigby, Val 10, 29
roads 7, 9, 10, 13, 23, 56, 62, 67, 91, 93, 94, 105, 106, 131, 133, 134, 138 see also Roman roads
repairs to 35, 40, 52, 54
Rodwell, Warwick 21, 22
Roman archaeology 5, 26, 70, 83, 106, 109
aqueducts 131
building material 59-60, 65, 79, 85, 91, 102-3, 133, 138
forni 61
hypocausts 87, 91
industrial 35
military 9, 11, 45, 47, 77, 99, 106, 135, 137-8
mosaics 1, 2, 9, 47, 62, 84-5, 86-8, 92, 138
opus signinum 65, 66
temples 4
tessellated pavements see Roman archaeology, mosaics
tesserae 59, 85, 86, 91
villas 138
Roman period, the
abandonment 39, 42, 62, 91, 138
early 9, 10, 35, 37, 38, 40, 42, 54, 56, 65, 66, 67, 71, 77, 92, 102, 106, 121, 130, 133, 134, 136, 137, 139
late 38-9, 43, 44, 52, 56, 57, 58, 59, 60, 61, 62, 66, 74, 75, 76, 77, 79, 80, 81, 84, 85, 86, 88, 89, 98, 121, 130, 131, 137, 138, 139
Roman roads see also roads
aggers 51, 52, 53-4
Ermin Street 5, 7, 32, 33, 35-6, 38-9, 40, 42, 43, 83, 84, 86, 132, 133, 138
Fosse Way 43, 44, 67, 92, 109, 130, 131, 138
Roman small towns 13
St Albans, Herts. 4
scheduled monuments 2, 11, 45, 93
schools 4, 7, 10, 23, 24, 94, 118
Second World War 1, 4, 16, 23, 24
sewers 2, 10, 49, 50, 61, 134, 137
Silchester, Hants. 31, 61
Sites and Monuments Records (SMRs) 11, 25, 29
Slater, Terry 18, 19, 25
Smith, David 18, 26
Society for the Promotion of Roman Studies 3
Society of Antiquaries of London, the 1, 2-3, 5, 10
Stroud, Glos. 22
suburbs 18, 19, 138
Tar Barrows 137, 139
town houses 1, 7, 9, 10, 17, 18, 21, 22, 23, 24, 27, 47, 53, 83, 84, 86, 87, 109, 113, 130, 131, 138
trackways 133
truncation of archaeological deposits 35, 38, 40, 43, 50, 70, 73, 74, 75, 83, 92, 97, 109, 110, 113, 116, 117, 118, 119, 121, 122, 127, 133, 139
Verey, David 16, 18, 22
Verulamium 5, 7, 9
Verulamium Excavation Committee 4
Victorian period, the 1, 16, 84, 85
Viner, David 9, 10, 11, 12, 14
Viner, Linda 10, 27
Wacher, John 4, 5, 7, 15, 61, 70, 86, 87, 106
Wales 13, 99
wheel ruts 51, 54, 62
Waring, Derek 7, 11
watercourses 31, 43, 81, 83, 92, 93, 105, 116, 130, 132, 133, 134, 136, 137, 139
Webster, Graham 2, 4, 5
wells 43, 70, 73, 74, 75-6, 83
Wheeler, Mortimer 4, 5
wheel ruts 51, 54, 62
Wilkinson, David 9, 10, 11
Winchester, Hants. 79, 83
woodland 2, 81
York 9, 12
Young, Rory 26, 27
Zeepvat, Bob 9, 10
This volume, the sixth in the Cirencester Excavations series, is concerned with archaeological investigations undertaken in the Roman town between 1998 and 2007.

The effect of current planning policy, which favours preservation in situ of important archaeological remains, has been to limit the scale of investigations undertaken in Cirencester over the last decade. Nevertheless, there has been a steady accumulation of new information arising from a collection of smaller investigations, and this volume presents the results of this fieldwork thematically, in chapters devoted to topics such as the street system, public buildings, houses and shops, and town defences. Of particular note are the results of two investigations within the western (Bath Gate) cemetery, which found both inhumation and cremation burials, including debris from the funeral pyre of a richly-appointed Flavian cremation. A concluding chapter reviews what can be learnt when small investigations in advance of development are studied in aggregate.

This volume also includes a review of the history of archaeological endeavour in Cirencester over the last fifty years, in commemoration of the golden jubilee of the formation of the Cirencester Excavation Committee in 1958, and a report concerning the rich stock of historic buildings in the town, a resource which has not as yet been studied in the detail and depth it deserves.