EXCAVATIONS AT KINGSCOTE AND WYCOMB, GLOUCESTERSHIRE

A ROMAN ESTATE CENTRE AND SMALL TOWN IN THE COTSWOLDS
WITH NOTES ON RELATED SETTLEMENTS
Frontispiece: Aerial view of Kingscote Site 2 in 1978 (Source: KAA archive)
EXCAVATIONS AT KINGSCOTHE AND WYCOMB, GLOUCESTERSHIRE

A ROMAN ESTATE CENTRE AND SMALL TOWN IN THE COTSWOLDS WITH NOTES ON RELATED SETTLEMENTS

by

Jane R Timby

with contributions by

Paul Arthur, Cliff Bateman, Thomas Blagg, Nick Cooke, Hilary Cool, Mark Corney, Stephen Cosh, Peter Cottrell, Timothy Darvill, Brenda Dickinson, Isabel Figueria, Janet Firth, John Giorgi, the late Margaret Guido, Alejandra Gutierrez, Martin Henig, Roger Ling, Donald Mackreth, David McOmish, Mark Maltby, Catherine Mortimer, David Neal, Andrew Payne, Mark Redknap, Richard Reece, Fiona Roe, Ian Scott, John Shepherd, Fiona Small, Cathy Stoertz, Edward Swain and Linda Viner

Cotswold Archaeological Trust Ltd
Cirencester
1998
This volume reports the results of two important excavations on Roman sites in the Gloucestershire Cotswolds: Kingscote (1973–1980) and Wycomb (1973–1977). The substantial collection of finds recovered are catalogued and discussed. New and detailed aerial and topographic surveys by the Royal Commission on the Historical Monuments of England and a geophysical survey of Kingscote by English Heritage are included.

Kingscote is interpreted as an estate centre and Wycomb as a small town. Other similar sites in the Cotswolds are described and comparisons made.
CONTENTS

List of illustrations ix
List of tables xi
Foreword by Timothy Darvill xiii
Acknowledgements xvii
Summary xix

1 Introduction 1
 What is a small town? 3
 The Cotswold small towns 4

PART A: KINGSCOTE

2 The site 7
 Location 7
 The archaeological background 9
 The discovery by Edward Swain 12
 Air photographic transcription and analysis by Fiona Small and Cathy Stoertz (RCHME) 13
 Summary 13
 Objectives 15
 Photographic sources consulted 15
 Survey methods and techniques 15
 Description of features transcribed 15
Report on the geophysical survey by Peter Cottrell and Andrew Payne 16
 Introduction 16
 Method 17
 Results 19
 Conclusions 21
Field-walking by Jane R Timby 23
Field-walking 1994 by Clifford Bateman 23

3 The excavations: Site 1, 1973–1975 26
 Introduction 26
 The quarry 28
 The buildings 28

4 The excavations: Site 2, 1975–1980 31
 Introduction: the excavation record 31
 Current analysis 31
 Phasing summary 33
 Detailed discussion of phases 35
 Summary 67

5 Architectural details 73
 The stonework by T F C Blagg 73
 Catalogue 73
 Discussion 76
 The wall-plaster by Roger Ling 77
 Description of the paintings 77
 The mosaics by David S Neal and Stephen R Cosh 87
 The Kingscote buildings: a reconstruction by David S Neal 89

6 The finds 91
 The coins by Richard Reece and Nick Cooke 91
 Kingscote Site 1 91
 Kingscote Site 2 91
 The Antonine medallion by Paul Arthur 92
 The small-finds 92
 Introduction by Linda Viner 92
 The small-finds from Kingscote Site 1 by Mark Redknap 93
 Objects of personal adornment or dress 93
 Hairpins; bracelets; finger rings by Mark Redknap 93
 Iron brooches; buckles by Ian Scott 93
 Miscellaneous jewellery; beads; pendants; buckles by Mark Redknap 93
 Iron hobnails and other shoe fittings by Ian Scott 93
 Toilet, surgical or pharmaceutical instruments 101
 Tweezers, toilet spoons/ear scoops; nail cleaners by Mark Redknap 101
 Objects used in the manufacture or working of textiles 103
Excavations at Kingscote and Wycomb, Gloucestershire

- Needles; spindle whorls; loom weights by Mark Redknap
- Household utensils and furniture 103
 - Iron objects: bucket fittings; lamps; other household objects by Ian Scott
 - Ceramic rings by Alejandra Gutierrez
- Objects used for recreational purposes 105
 - Counters by Mark Redknap
- Objects used for or associated with written communication 105
 - Iron styli by Ian Scott
- Objects associated with transport 106
 - Harness; horse equipment and cart fittings by Ian Scott
- Tools and ancillary equipment 106
 - Handles by Mark Redknap
 - Ironwork by Ian Scott
 - Hone stones by Mark Redknap and Sara Chambers
- Fasteners and fittings 108
 - Decorative and miscellaneous fittings by Mark Redknap
 - Iron keys; rings; collars; spikes; other fastenings; nails and dogs; bindings; miscellaneous objects by Ian Scott
- Objects associated with agriculture, horticulture and animal husbandry 111
 - Agricultural tool by Ian Scott
- Objects and waste material associated with metal-working 111
 - Bronze smithing; lead scrap; lead repairs by Mark Redknap
- General discussion by Mark Redknap 113
- The small-finds from Kingscote Site 2 113
- Objects of personal adornment or dress 113
 - Copper-alloy brooches (Sites 1, 2 and field-walking) by Donald Mackreth
 - Iron brooches by Ian Scott
 - Beads by the late Margaret Guido
 - Finger rings; bracelets; ear-rings; pins by Linda Viner
 - Buckles by Linda Viner and Ian Scott
 - Studs; fastenings; tags by Linda Viner
 - Iron hobnails and other shoe fittings by Ian Scott
- Toilet, surgical or pharmaceutical instruments 165
 - Nail cleaners; chatelaine set; tweezers; toilet spoons by Linda Viner
 - Razor or eraser handle by Martin Henig
 - Mixing palettes by Alejandra Gutierrez and Fiona Roe
- Objects used in the manufacture or working of textiles 167
 - Sewing needles by Linda Viner
 - Spindle whorls by Linda Viner and Alejandra Gutierrez
- Household utensils and furniture 169
 - Spoons; hook; furniture attachments; bindings and fittings, ring-keys and bone inlay by Linda Viner
 - Household objects in iron: bucket fittings, candlestick, lamp by Ian Scott
 - Stone objects: mortars, discs, querns, whetstones, rubbers and chopping boards by Alejandra Gutierrez and Fiona Roe
 - Table-tops by T F C Blagg
 - Ceramic rings by Alejandra Gutierrez
- Fasteners and fittings 190
 - Nails; bosses; studs; fittings by Linda Viner
 - Locks and keys by Linda Viner and Ian Scott
 - Structural fittings; nails and dogs; bindings; mounts and decorative plates by Ian Scott
- Objects associated with agriculture, horticulture and animal husbandry 196
 - Spearheads and arrowheads by Ian Scott
 - Agricultural tools; farrier's tools; other tools by Ian Scott
- Objects associated with religious beliefs and practices 199
 - Stone relief of Fortuna by Martin Henig with geological analysis by Philip Powell
- Objects and waste material associated with metal-working 201
 - Copper alloy waste by Linda Viner
 - Smith's tools by Ian Scott
 - Assessment of technological debris by Catherine Mortimer
- Objects of uncertain function/identification 202
<table>
<thead>
<tr>
<th>Contents</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper alloy, lead, jet, bone by Linda Viner</td>
<td></td>
</tr>
<tr>
<td>Iron by Ian Scott</td>
<td></td>
</tr>
<tr>
<td>Ceramic by Alejandra Gutierrez</td>
<td></td>
</tr>
<tr>
<td>Kingscote field-walking finds</td>
<td>206</td>
</tr>
<tr>
<td>Introduction by Linda Viner</td>
<td></td>
</tr>
<tr>
<td>Objects of personal adornment or dress</td>
<td>207</td>
</tr>
<tr>
<td>Beads by Linda Viner</td>
<td></td>
</tr>
<tr>
<td>Intaglios with or without rings by Martin Henig</td>
<td></td>
</tr>
<tr>
<td>Finger rings; bracelets; ear-rings; necklace; pins; fastening by Linda Viner</td>
<td></td>
</tr>
<tr>
<td>Toilet, surgical or pharmaceutical instruments</td>
<td>210</td>
</tr>
<tr>
<td>Nail cleaners; tweezers; cosmetic spoons; spoon-probes; ear scoops; spatula by Linda Viner</td>
<td></td>
</tr>
<tr>
<td>Objects used in the manufacture, or working of textiles</td>
<td>211</td>
</tr>
<tr>
<td>Spindle whorls; needles by Linda Viner</td>
<td></td>
</tr>
<tr>
<td>Household utensils and furniture</td>
<td>211</td>
</tr>
<tr>
<td>Ring-keys; spoons; box fitting; furniture fittings; vessels; lamp; whetstone by Linda Viner</td>
<td></td>
</tr>
<tr>
<td>Objects used for recreational purposes</td>
<td>211</td>
</tr>
<tr>
<td>Dice; counters by Linda Viner</td>
<td></td>
</tr>
<tr>
<td>Objects employed in weighing and measuring</td>
<td>213</td>
</tr>
<tr>
<td>Weights by Linda Viner</td>
<td></td>
</tr>
<tr>
<td>Objects used for or associated with written communication</td>
<td>213</td>
</tr>
<tr>
<td>Styli; seals; seal boxes by Linda Viner</td>
<td></td>
</tr>
<tr>
<td>Tools and ancillary equipment</td>
<td>213</td>
</tr>
<tr>
<td>Iron punch by Linda Viner</td>
<td></td>
</tr>
<tr>
<td>Fasteners and fittings</td>
<td>213</td>
</tr>
<tr>
<td>Locks; nails and studs by Linda Viner</td>
<td></td>
</tr>
<tr>
<td>Military equipment</td>
<td>213</td>
</tr>
<tr>
<td>Buckles; fittings by Linda Viner</td>
<td></td>
</tr>
<tr>
<td>Objects associated with religious beliefs and practices</td>
<td>216</td>
</tr>
<tr>
<td>Miniature model by Linda Viner</td>
<td></td>
</tr>
<tr>
<td>Objects of uncertain function/identification</td>
<td>216</td>
</tr>
<tr>
<td>Copper alloy, bone by Linda Viner</td>
<td></td>
</tr>
<tr>
<td>Kingscote Site 2 by Jane R Timby with a catalogue of the samian by Brenda Dickinson</td>
<td></td>
</tr>
<tr>
<td>Brick and tile</td>
<td>267</td>
</tr>
<tr>
<td>Ceramic brick and tile by Alejandra Gutierrez</td>
<td></td>
</tr>
<tr>
<td>Stamped tile by Timothy Darvill</td>
<td></td>
</tr>
<tr>
<td>Stone roof tile by Alejandra Gutierrez</td>
<td></td>
</tr>
<tr>
<td>Floor inlay by Alejandra Gutierrez</td>
<td></td>
</tr>
<tr>
<td>7 Environmental evidence</td>
<td>271</td>
</tr>
<tr>
<td>Charcoal Identification by Isabel Figuerial</td>
<td></td>
</tr>
<tr>
<td>Charred plant remains by John A Giorgi</td>
<td></td>
</tr>
<tr>
<td>Cereal grains</td>
<td></td>
</tr>
<tr>
<td>Weed seeds</td>
<td></td>
</tr>
<tr>
<td>Discussion</td>
<td></td>
</tr>
<tr>
<td>8 The human bone</td>
<td>275</td>
</tr>
<tr>
<td>Kingcote Site 1 by Janet Firth</td>
<td></td>
</tr>
<tr>
<td>Kingcote Site 2 by Janet Firth</td>
<td></td>
</tr>
<tr>
<td>Introduction and analysis</td>
<td></td>
</tr>
<tr>
<td>9 Kingscote gazetteer</td>
<td>277</td>
</tr>
<tr>
<td>The site</td>
<td></td>
</tr>
<tr>
<td>Kingscote area</td>
<td></td>
</tr>
<tr>
<td>10 Kingscote: general discussion</td>
<td>287</td>
</tr>
<tr>
<td>Origins and development</td>
<td></td>
</tr>
<tr>
<td>Morphology</td>
<td></td>
</tr>
<tr>
<td>Specialist functions</td>
<td></td>
</tr>
<tr>
<td>Later history</td>
<td></td>
</tr>
<tr>
<td>Conclusions</td>
<td></td>
</tr>
<tr>
<td>PART B: WYCOMB</td>
<td></td>
</tr>
<tr>
<td>11 The site</td>
<td>295</td>
</tr>
<tr>
<td>Location</td>
<td></td>
</tr>
<tr>
<td>Archaeological background</td>
<td></td>
</tr>
<tr>
<td>Archaeology surrounding Wycomb</td>
<td></td>
</tr>
<tr>
<td>Air photographic transcription and analysis by Fiona Small (RCHME)</td>
<td>302</td>
</tr>
<tr>
<td>Introduction</td>
<td></td>
</tr>
<tr>
<td>Survey methods and techniques</td>
<td></td>
</tr>
<tr>
<td>Description of the site and the features transcribed</td>
<td></td>
</tr>
<tr>
<td>12 Excavations by the late W L Cox at Syreford Mill, 1973–1977 by Timothy Darvill and Jane R Timby</td>
<td>305</td>
</tr>
<tr>
<td>Introduction</td>
<td></td>
</tr>
<tr>
<td>Methodology</td>
<td></td>
</tr>
<tr>
<td>Phasing</td>
<td></td>
</tr>
<tr>
<td>Phase 0 early prehistoric</td>
<td></td>
</tr>
<tr>
<td>Phase 1 late Iron Age–early Roman</td>
<td></td>
</tr>
<tr>
<td>Phase 2 Roman features</td>
<td></td>
</tr>
<tr>
<td>Phase 3 the late Roman cemetery</td>
<td></td>
</tr>
</tbody>
</table>
13 The finds 319
Copper alloy by Linda Viner
Glass by John Shepherd
Jet; lead; fired clay and stone by Linda Viner
Ironwork by Ian Scott
The brooches from Syreford Mill and Andoversford Bypass by Donald Mackreth
Pottery summary by Jane R Timby

14 The human remains 331
Syreford Mill by Janet Firth
Andoversford Bypass by Janet Firth

15 Wycomb gazetteer 337
The site
Wycomb area

16 Wycomb: general discussion 347
Origins and location
Morphology
Buildings
Specialist functions
Later history
Conclusions

17 Bourton-on-the-Water 353
The site
Location
Archaeological background
The archaeology of the Bourton-on-the-Water/Lower Slaughter area
Bourton-on-the-Water gazetteer 364
Bourton-on-the-Water: general discussion 378
Origins and development
Morphology
Buildings
Specialist functions
Later history
Conclusions

18 Lower Slaughter 384
The site
Location
Archaeological background
Lower Slaughter: general discussion 388
Origins and development
Morphology and buildings
Specialist function
Conclusions

19 Dorn 390
The site
Location

PART C: RELATED SITES AND DISCUSSION

20 Discussion 400
The Roman coins by Richard Reece
Discussion
The animal bones from Roman ‘small towns’ in the Cotswolds by Mark Maltby 421
Introduction
The faunal samples
Species representation
Metrical data
Ageing data
Butchery data
Conclusions
Conclusion by Jane R Timby 428
Location
Geography, morphology and chronology
Economic activities and religion
Summary

Appendix 1: List of ‘Sites’ used 437

Bibliography 439

Index 457
LIST OF ILLUSTRATIONS

Frontispiece Aerial view of Kingscote Site 2 in 1978

Col PI I Fragments of painted plaster showing head and shoulders of Cupid taken during the excavations
Col PI II Wall-plaster: reconstructed area A
Col PI III Wall-plaster: reconstructed area B

Fig 1 Location map of region
Fig 2 Topographic map of Kingscote area
Fig 3 Location map showing Kingscote Sites 1 and 2
Fig 4 RCHME field-walking plan with later additions
Fig 5 Hypocaust system
Fig 6 Aerial photographic transcription of Kingscote
Fig 7 Location of geophysical survey at Kingscote
Fig 8 Magnetometer survey plot
Fig 9 Resistivity survey plots
Fig 10 Magnetic susceptibility results
Fig 11 Plot of field-walking finds
Fig 12 Kingscote Site 1: quarry and Building 2
Fig 13 Kingscote Site 1: Building 1
Fig 14 Site 1: Building 1 detail of oven
Fig 15 Site 1: detail of hobnailed boot
Fig 16 Kingscote Site 2: plan to show building numbers
Fig 17 Kingscote Site 2: plan showing room numbers
Fig 18 Kingscote Site 2: phasing summary
Fig 19 Kingscote Site 2: section of Quarry 2
Fig 20 Kingscote Site 2: section across Room 9
Fig 21 Kingscote Site 2: plan of Buildings I, II, III and Villa
Fig 22 Kingscote Site 2: view of area 19
Fig 23 Kingscote Site 2: plan of Buildings IV, V and VI
Fig 24 General view of Building VII (Room 17)
Fig 25 Details of ovens, Room 17
Fig 26 Detail of corn drier, Room 17

Fig 27 Quern in situ in Room 17
Fig 28 Kingscote Site 2: plan of Building VIII, Phase 4.1
Fig 29 Kingscote Site 2: plan of Building VIII, Phase 4.2
Fig 30 Detail of hearths, Room 8
Fig 31 Detail of hearth in Room 15
Fig 32 Detail of drain in Area 11
Fig 33 Detail of structure [19], Room 10
Fig 34 View to east from Room 3
Fig 35 Room 1 with mosaic looking east
Fig 36 Details of Room 2
Fig 37 Kingscote Site: plan of Building IX (Room 12)
Fig 38 Building IX (Room 12) View to north
Fig 39 Detail of compound wall north of Room 12
Fig 40 Details of gateway
Fig 41–2 Architectural stonework
Fig 43a,b Detail of wall-plaster, areas A-B
Fig 44a-c Detail of wall-plaster, areas C-E
Fig 45 Detail of painting showing evidence of fresco technique
Fig 46 Head of Cupid
Fig 47 Head of right-hand nimbed figure
Fig 48 Torso of reclining (?) figure (area D)
Fig 49 Figure with calathus (area E)
Fig 50 Mosaic
Fig 51 Detail of mosaic
Fig 52 Reconstruction of Buildings VIII and IX
Fig 53 Antonine medallion
Figs 54–8 Site 1: 1 Objects of personal ornament/dress
 Site 1: 2 Toilet instruments; 3 Items for textile working/manufacture; 4 Household utensils and furniture
Fig 59 Site 1: Ironwork: 1 Object of personal ornament/dress; 4 Household utensils and furniture; 7 Styli; 8 Horse equipment; 10 Tools
Fig 60 Site 1: 4 Ceramic ring
Fig 61 Site 1: Ironwork: 10 Tools; 11 Fasteners
LIST OF TABLES

1 Kingscote: number of iron objects by class
2 Kingscote: locations of iron objects
3 Small finds from Kingscote by material
4 Identified small finds by site period and function
5 Personal ornament from Kingscote and other sites
6 Selected object categories from Kingscote and other sites
7 Kingscote Site 2 pottery: overall quantities by fabric
8 Kingscote Site 2 pottery: main wares from the quarries
9 Comparison of pottery from Kingscote, Uley and Frocester
10 List of charcoal samples
11 The plant remains from the corn drier, Building VII
12 Coin list
13 Coins by sites and period fully identified
14 Coins by sites and period not fully identified
15 Total coins per thousand fully identified
16 Species represented in the faunal samples
17 Percentages and ratios of major domestic species
18 Summary of measurements of bones from Kingscote
19 Age range of major domestic species at Kingscote
20 Distance of minor settlements from main centres
FOREWORD

By Professor Timothy Darvill
(Chairman of the Board of Directors, Cotswold Archaeological Trust)

It is widely recognized that in Roman times the Cotswolds was among the most widely settled and wealthy areas of Britannia. Extensive and richly appointed villas such as Woodchester, Chedworth, Spoonley Wood and Rodmarton are well-known and celebrated sites. More humble farmsteads such as Barnsley Park, Farmington, and Vineyards Farm have come to the fore in recent years. And at the other end of the spectrum is Corinium Dobunnorum, modern Cirencester, the second largest urban settlement in Britannia from the second century through to the fourth centuries. Less known are the range of settlements that in size and status seem to lie between the farmsteads and villas at one end and the towns and urban areas at the other. This report focuses on excavations at two such sites: the small-town of Wycomb, north of modern Andoversford, and the putative estate centre at Kingscote between Wotton-under-Edge and Nailsworth. Both sites were abandoned at the end of the Roman period and never subsequently re-occupied on any scale. Today they are green-field sites in agricultural use. Both also share the fact that their investigations were carried out by enthusiastic and capable amateur archaeologists drawing on the rich and long-standing tradition of such work that was such a feature of archaeological research in Gloucestershire, as elsewhere in Britain, during the 1970s.

The work at Wycomb began in 1969 with the construction of a new by-pass for the busy A40 Oxford to Cheltenham road around the north side of Andoversford. The roadline cut the southern edge of the Roman small town whose only earlier investigation of any note occurred in 1863-4 also prompted by the construction of transport infrastructure, the Cheltenham to Bourton railway line, running through an area of Roman finds recorded since at least the later seventeenth century. Mr Bernard Rawes and Mr Wilfred Cox, both now deceased, carried out the excavations along the A40 on behalf of, and with limited financial and practical support from Cheltenham Museum. A report on part of the work was published by Bernard Rawes in the Trans- actions of the Bristol and Gloucestershire Archaeological Society for 1980 (volume 98, pp 11-55). Later, between 1970 and 1978, Wilfred Cox undertook excavations at Syreford Mill on the west side of Wycomb because of a threat to the Roman deposits here posed by gravel quarrying. This work was again carried out with the backing of Cheltenham Museum, and much personal support and assistance from its staff, the late Mr Ken Brown, Mr David Addison, and Mr Alan Saville. Excavations took place every Sunday from Easter through to the end of September, with a two-week ‘dig’ every summer. It was as one of several pupils recruited from schools in Cheltenham that I first encountered the site and became involved with the excavations; Wilf Cox was a teacher at Oakley Secondary School in Cheltenham. Each Sunday morning a string of up to a dozen volunteers variously riding bicycles and mopeds could be seen struggling up Tunnel Hill at Dowdeswell on their way to the site while the director trundled by in his light-blue Morris Traveller laden with more helpers and the excavation equipment.

Investigations at Kingscote by Ted (Edward) Swain began in 1975 after several years of extensive fieldsurvey by a small group of dedicated enthusiasts who later formed the Kingscote Archaeological Association. Like Wycomb, this site had been known since the late seventeenth century, but very poorly explored. Supported by Stroud Museum, and encouraged by its then curator Lionel Walrond, a small trench was excavated in September 1975 in a field known as The Chessalls. It came down onto what proved to be the corner of a building. After clearing a small amount of building debris the excavators found a large hole which investigation revealed was the collapsed roof of a hypocaust system that extended away under the ploughed field for some distance.
The excitement of this discovery is evident from Ted Swain’s own account published in the first of a series of annual summaries of the excavations printed with financial help from Imperial Tobacco Ltd. My own first introduction to the site was to crawl through the hypocaust and explore, underground, three rooms of a building of which there was no trace on the surface. A strange experience. Between 1975 and 1979 these and other rooms of an extensive range of buildings were systematically explored as a piece of pure research. Every summer dozens of volunteers and helpers came from all over Britain to assist not only with the excavations but also with showing members of the public round the site. The annual open day attracted crowds of people to see what had been found, and in later years the Ermine Street Guard expanded the range of attractions by performing manoeuvres and demonstrating their replica ballista and onager. The post-open-day parties were legendary among the archaeological community of southern England and always well attended. The popularity of the site, the quality of the finds, and the free-wheeling research-driven basis of the work attracted the interest of numerous experts and authorities on many different materials. A glance at the contributors to the annual reports, and the authors of the specialist pieces in this volume stands, as a testament to what can be achieved through collaboration and openness; a credit to Ted’s ability to fire others with his own infectious enthusiasm.

Excavations at both Kingscote and Wycomb came to an end in the early 1980s because of competing commitments faced by their respective directors. Both had begun the process of post-excavation analysis, but without time and resources it was inevitable that the work would be slow and difficult. The sudden death of Wilf Cox in 1986 meant that work on Wycomb came to a halt.

In 1993, English Heritage funded the Cotswold Archaeological Trust to carry out an assessment of the work at Wycomb and Kingscote with a view to determining the potential of the available archives, what other material might be available, and whether further analysis and publication would be feasible and appropriate. The work also involved a consideration of small-scale excavations carried out between 1971 and 1983 at Bourton-on-the-Water, another possible Roman small town in the Cotswolds between Northleach and Stow on the Wold, by the late Mr Colin Renfrew.

The assessment programme concluded that Kingscote, the largest and most systematically excavated of the sites considered, and the one about which least is known in the literature, deserved fairly detailed publication. The excavations had uncovered quite a prestigious well-appointed suite of buildings belonging to the fourth century. One of the most remarkable discoveries was a panel of collapsed figured wall-plaster, a rare find on a Romano-British site. Over the years Kingscote has also produced a considerable number of finds, most of which remain unpublished. A similar conclusion was reached for Wycomb. Here, although the excavations were of a smaller scale than at Kingscote, the post-excavation work on the stratigraphy was more advanced and could be completed fairly easily. Unfortunately, many of the finds from the site had become lost or mixed, especially the human bone, but sufficient remained to allow a brief description and dating of the excavated features. The records for the Bourton-on-the-Water excavations were found to be far less easy to comprehend, and with the exception of pottery there were few remaining finds. It was therefore concluded, with some regret, that further work on this material could not be justified.

During the assessment it also became clear that there was a wealth of untapped information relating to Kingscote, Wycomb, Bourton-on-the-Water and several other major settlements in the Cotswolds that deserved attention. This material resided in public museums and private collections. It included, for example, maps and plans of Bourton annotated by Mrs Helen O’Neil and Dr Gerald Dunning deposited at Cheltenham Museum following Mrs O’Neil’s death in 1984; a private collection of aerial photographs of the Kingscote area taken by Professor Colin Pennycuick, and various private collections of finds. It was also noted that several of the major Roman settlements lay within open countryside which allowed the possibility of topographical and geophysical surveys and the chance of significant additions to knowledge through the systematic plotting of aerial photographs.

The resulting Cotswold Roman Small Towns Project, carried out by the Cotswold Archaeological Trust with funding from English Heritage between 1993 and 1997, and reported in this volume, exploits all of these opportunities for survey and reconnaissance and benefits greatly from the contributions made by the Royal Commission on the Historic Monuments of England and the Geophysical Section of English Heritage’s Ancient Monuments Laboratory. In addition to the final publication of the two excavations by Swain and Cox at Kingscote and Wycomb respectively, there are summaries of the current state of knowledge relating to Bourton-on-the-Water, Lower Slaughter and Dorn.

Inevitably, this report is not a straightforward account of a series of excavations such as one might nowadays expect. There are several reasons for this. First and foremost is the fact that the work described here took place two decades ago in a context that was, at that time, common and typical. Accordingly the results must be set against the intellectual and organizational environment in which the primary data were collected. Second, many of those who were
originally involved with these projects, and whose work is here expanded, are no longer alive to answer questions and elaborate details that could have allowed the interpretation of things that now seem unintelligible. Third, while every reasonable effort has been made to track-down and recover the finds and records relating to the sites reported here it is possible that further information exists unbeknown to the authors.

In bringing this report to publication Dr Timby and her team of specialists and assistants provide fascinating new insights on five Roman sites that represent an important element of the Roman settlement pattern of the Cotswolds. Naturally, the publication and review of these sites now opens many new questions and avenues for research. Some will no doubt be answered in due course from development-prompted archaeological investigations. Others, however, should provide the focus for question-led and opportunistic research projects of the kind that engaged Ted Swain and Wilf Cox and whose legacy we now have before us.

Bournemouth
October 1997
ACKNOWLEDGEMENTS

A report such as this cannot have been undertaken without the assistance of a large number of people and it is a pleasure to be able to extend our gratitude here. One of the problems of inheriting the products of other people's hard labours is the recognition of all those who contributed from the outset, and apologies are made now to anyone inadvertently overlooked. First, the report could not have been prepared without the help and co-operation of the main instigator of the recent excavations and associated fieldwork at Kingscote, Ted Swain, the director of the Kingscote Archaeological Association (KAA). Not only has Ted willingly handed over his material for study, but he has patiently dealt with all our probing questions, even if he has not particularly liked some of our interpretations. Other principal members of the KAA were Graham and Glen Walker, Robin and Frank Wichard, Mary Parris, Victor Jellings and Tim Copeland. Excavation work over the years was carried out by a large contingent of volunteer labour amounting to some 150 individuals, a testament to local interest and enthusiasm.

Thanks are also particularly extended to the landowners, past and present, for allowing the work in the first place, in particular the Chamberlain and Nichols families. Mr Graham Nichols has also permitted further access on to his land for more recent work connected with this report.

Financial support during the course of the Kingscote excavations was provided by Imperial Tobacco Ltd, Mr John Harris, Mrs M Guido, Professor J Toynbee, Mr F Applebe, The Bristol and Gloucestershire Archaeological Society, The Gloucester and District Archaeological Research Group, Hattersley Newman Hender Ltd, R A Lister and Co Ltd, Mr Ian Heath, and Mr Gordon Chamberlain and family. The present post-excavation programme was funded by English Heritage through Cotswold Archaeological Trust.

Preparation of the Syreford Mill report would not have been possible without the willingness of Mrs W Cox to hand over various finds and records relating to her late husband's work. The work at Wycomb was directed by the late Wilfred Cox, assisted by Mr Peter Kendall, with support and financial assistance from Cheltenham Museum and Art Gallery. Staff of the museum, including Mr Kenneth Brown, Mr David Addison and Mr Alan Saville provided much valuable advice over the years. Miss S Evans-Lawrence of Whittington Court generously allowed the excavations to take place on her land. Mrs White of Syreford Mill allowed access and provided a store for finds and equipment. Among the volunteers working on the site were, among many others, Paul Arthur, Timothy Darvill, and Jo Webb. Help with the identification and sorting of finds during the time when the excavation was in progress included Mr M R Hull of Colchester Museum, Dr Oyler, Dr Richard Reece, and Mr Alan Saville.

In preparing the present report we are indebted to the helpfulness of the various museums who have allowed us access to material and records: Corinium Museum, Cirencester (David Viner, John Paddock, Marilee Parrott); Stroud Museum (Lionel Waldron, Sue Heywood, Hugh Morrison); Gloucester City Museum and Art Gallery (John Rhodes, Malcolm Watkins); Cheltenham Museum and Art Gallery (Stephen Blake, Helen Okall, Guy Kilminster). Conservation of the artefacts was undertaken by Vanessa Fell (Oxford), and Marilee Parrott (Corinium Museum).

There have inevitably been a large number of contributors to the report, several specialists having been involved with the excavations from the beginning (Martin Henig, Paul Arthur, Thomas Blagg, Richard Reece, John Shepherd and Mark Redknapp); other contributors are recorded on the title page. I am particularly indebted to Linda Viner who has undertaken much additional work connected with the project, in particular collating the data for the gazetteers and organising the archive.

The principal illustrators are Nick Griffiths (small-finds, wall-plaster), Peter Moore (plans) and Alejandra Gutierrez (finds and plans). Other drawing
work has been undertaken by Quentin Hutchinson (stone), Richard Morton (fig 11), Gillian Sharpe (figs 128–9) and Jane Timby (pottery).

Numerous other individuals have assisted us in our endeavours in various ways. In particular we would like to thank Frances Brown, M Davis, Mhairi Handley (NMR), Mr V Jellings, Professor W Manning, Miss B Noddle, Professor C Pennycuick (aerial photographs), Mr B Rawes, Dr S Roskams, Mr D Stratford, Mr S Webb, Mr J Rhodes, and Gloucester County Council (SMR).

Alejandra Gutierrez would like to thank Dr J Turner (School of Earth Sciences, Univ of Birmingham), Dr A King and Alex Turner (both King Alfred’s College, Winchester), David Mason and David Zienkiewicz for their assistance and suggestions on the stone and tile reports.

Janet Firth would like to thank Don Brothwell (Univ of York), G Brendan Glass (B Dent Sc), Dr S Hillson (Univ College, London) Jan Conheeney (Museum of London) for discussing certain details of bone and dental anomalies; Naomi Mott (Univ College, London) and Timothy D Davies (MRCVS) for taking x-rays; Simon Johnson and Chris Stride (Photographic Dept, Univ of Reading) and Sarah Firth.

Dr Mark Redknap would like to acknowledge assistance from Sara Chambers, Evan Chapman, John Olive (analysis of lead) and Richard Reece.

Permission to reproduce photographs has been given as follows: E J Swain (KAA) (frontispiece, colour plates I–III, Figs 5, 14–15, 22, 24–7, 30–6, 38–40, 46–7 and 51); Cheltenham Museum and Art Gallery (Fig 124); Royal Commission on the Historical Monuments (England) (Figs 4, 6, 34, 123, 150 copyright reserved); English Heritage (Figs 7–10 copyright reserved), David S Neal (Figs 50 and 52 copyright reserved), and Timothy Darvill (Figs 130, 132–3).

Professor Martin Millett, Dr Barry Burnham and Neil Holbrook kindly undertook the arduous task of reading the manuscript which has benefited greatly from their constructive comments.

The main site archives are deposited with Corinium Museum, Cirencester (Kingscote); and Cheltenham Museum and Art Gallery (Wycomb).
SUMMARY

The presence of Roman occupation at Kingscote, Glos has been known for nearly three centuries, although the exact nature of the settlement has been elusive. As a result it has been variously classified by scholars as a villa, a villa estate, an imperial estate, and a Roman small town.

Excavations carried out between 1973 and 1980 by the Kingscote Archaeological Association, under the direction of E J Swain, have provided some evidence with which to explore the question of Kingscote. The work, covering consecutively two separate sites (Sites 1 and 2), revealed a number of small stone quarries and buildings. The quarries, dating from the later first to later second century, were backfilled with substantial quantities of domestic refuse. The land was subsequently used for a number of strip buildings with drystone foundations, built in the late second/early third centuries. On Site 2, several of the strip buildings were subsequently demolished for the construction of a more sophisticated building, in the early fourth century. The later structure, comprising several rooms, some with mosaic floors, underfloor heating and high-quality wall-plaster, was set within its own walled compound. A separate building within the same compound may have been used as a workhall for furniture production. Other buildings outside the walled compound had an agricultural use, one in particular contained a corn-drying oven and several large quernstones. The main building had a relatively short, but complicated history, which saw a large number of structural refurbishments. Coins and other debris suggest it had fallen out of use by c AD 360, possibly as a result of a fire.

The following report outlines the results of the excavations and catalogues the finds. In order to explore more extensively the evidence from both the site, and the immediate surrounding area, an archaeological gazetteer has been prepared. The evidence amassed is discussed in detail and Kingscote's position in the settlement hierarchy considered.

Extending the net slightly wider, other possibly comparable sites in the Gloucestershire Cotswolds are also looked at in terms of the current evidence available. In particular, the sites of Wycomb-Andoversford, Bourton-on-the-Water, Lower Slaughter and Dorn are assessed. The results of unpublished excavations at Syreford Mill, Wycomb by the late Wilf Cox are included as part of this overview.
1. INTRODUCTION

The following report is concerned with one facet of the Roman settlement pattern in the Gloucestershire Cotswolds (Fig 1). The Cotswolds form a distinct geomorphological region standing in marked contrast to surrounding low-lying areas, in particular the Severn Vale to the west, the Vale of Evesham and Avon Valley to the north, and the Thames Valley to the south. Geologically most of the area comprises rocks of the Jurassic series, in particular limestone, giving rise to the distinctive topography of the region. The Cotswolds have attracted a high density of population from prehistoric times onwards and the region has, throughout history, supported its own distinctive agriculturally based economy. The Romans were also particularly attracted to the region and evidence of their presence is well documented. The local oolitic limestone, exploited by Romans, and others, as a source of building stone, survives well in the archaeological record. Modern widespread arable agriculture has allowed the opportunity for plotting cropmarks from aerial survey, as well as the identification and recording of surface scatters of material on the ground. A thorough inventory compiled by the RCHME in 1976 recorded, as far as was possible, all known monuments of Iron Age and Romano-British origin in the Gloucestershire Cotswolds, providing a valuable source of information on which to build further work (RCHM 1976).

During the nineteenth century, and earlier, many discoveries of Roman remains were made by antiquarian excavators. Villas and rich town houses in particular became the target of their interest, perhaps being seen as the residences of a civilised society with whom the investigators, mainly the landed gentry and clergy of the time, felt an affinity. The quality of the material recovered from such sites, notably mosaics, sculptures, high-quality small finds and coins, probably provided an added incentive. Lesser-status habitations lacking the Roman cultural veneer were either not recognised, or not considered worthy of investigation. It is perhaps for this reason that Collingwood and Myres (1937, 210) stated that the Cotswolds were densely populated with villas but contained no villages. Fortunately this image has changed, in the Cotswolds and elsewhere, and a wide variety of settlement types are now recognised, ranging from modest rural farmsteads, perhaps such as Haymes, Cleeve Hill (Rawes 1986) at the lower end of the scale, through to the civitas capital at Cirencester (Corinium Dobunnorum), in area the second largest town in Roman Britain and, in the fourth century, a provincial capital. In between these two extremes are a multiplicity of other settlement forms, in particular the villas, including some exceptionally well-appointed examples, such as Woodchester and Chedworth, religious centres such as Uley, and minor agglomerated rural settlements such as Bourton-on-the-Water, Lower Slaughter and Dorn.

In recent years the term ‘small town’ has been applied to a number of larger rural settlements in Britain, and Frere (1975, fig 1) identified four such sites within the Gloucestershire Cotswolds: Wycomb, Kingscote, Bourton-on-the-Water and Dorn. Burnham (1986) and Burnham and Wacher (1990, fig 1) identify three sites: Wycomb, Dorn and Bourton, including in their discussion of Bourton the site at Lower Slaughter. Kingscote was omitted, perhaps because too little was known about the site. Unfortunately, most of our knowledge concerning the rural sites has been accumulated through antiquarian excavations, casual finds and very piecemeal excavation, frequently carried out by individuals, landowners or amateur groups. On the other hand without the efforts of these people our knowledge of Roman occupation in the Cotswolds would be much the poorer. Few sites have been subjected to modern excavation techniques and analysis, and such is the nature of archaeology today that even the small number of opportunities available to look at known sites are too limited to allow a full appreciation of the archaeology in its wider context.

The aim of the following report is twofold: first to bring to publication the results of excavations carried
Fig 1 Location map of region.
out during the 1970s at two of these major rural sites: Kingscote and Syreford Mill (Wycomb); secondly to discuss the nature and the character of these two settlements alongside others of apparent comparable status in the Cotswold region and to look at all the sites in a wider setting by documenting the known archaeology from their hinterlands.

What is a ‘small town’?

The minor settlements of Roman Britain, or ‘small towns’ as they have generally become known, have engendered much academic interest in the past two to three decades. Following on from an article by Todd (1970) highlighting the problems associated with the definition of the term, a conference was held in Oxford on the theme of Roman Small Towns, later published by Rodwell and Rowley (1975). The topic has also been the subject of two research projects: Crickmore (1984) looking at such settlements in the West Midlands, and R F Smith (1987) looking at roadside settlements. More recently a comprehensive review of a selected number of small towns has been published by Burnham and Wacher (1990) bringing up to date our knowledge on several individual sites. The proceedings of a conference held in 1992 to discuss ‘small towns’ in Eastern England has added to the recent literature (Brown 1995).

Small towns are one facet of a very complex settlement pattern which includes large compact villages, hamlets and farmsteads. The term is well acknowledged to be a very wide-ranging one, as well as somewhat contentious, and it is perhaps for this reason that no definitive classification has been produced, or in fact can ever be produced. The terms ‘minor town’ and ‘large village’ have equally been used. Hingley (1989, 25) prefers the term ‘local centre’ for smaller settlements reserving the term ‘small town’ for larger centres with urban traits.

As Britain became increasingly romanised not only did it begin to develop a strong economy, but the beginnings of a clearly distinct settlement hierarchy began to emerge. It could be argued that this process can be traced back to the later Iron Age, if not before, with the emergence of large tribal centres (oppida) within defined territories, such as Bagendon. As the fore-runners of towns, the oppida were important socially and economically, and were thus distinct from smaller regional centres and, at the lowest end of the range, isolated rural farmsteads. A number of such smaller pre-Roman centres, clustered settlements or villages have been identified in the Thames Valley, for example at Farmoor (Lambrick and Robinson 1979), and Claydon Pike, near Fairford (Miles and Palmer 1983). The imposition of Roman rule perhaps accelerated and formalised a process already underway in tribal Britain, adding a recognisable and distinctive cultural veneer. The towns (coloniae, municipia and civitas capitals) can be distinguished in legal, functional and morphological terms; they show distinctive features that can be paralleled on classical Roman sites, such as street grids, public buildings, town houses, architectural grandeur, defined cemeteries: all typical Roman products. Other forms of settlement in Britain are much less easy to define; many of the features that would allow a label to be placed on a site are not particularly tangible archaeologically.

A useful classification of settlement is one based on genetics, where comprehension comes from understanding how it has evolved or developed. One of the very reasons that any attempt at formal classification has been beset by difficulties is that settlements are continually evolving and re-forming. Without a complete picture of this process in time and space, any classification can only be guesswork. It presupposes that a small town was a concept from the beginning whereas in reality several of the so-called small towns probably evolved to that state for a relatively short period of time from something else. Taylor (1983, 104) points out that each rural settlement was likely to be associated with a clearly defined estate or land unit which may be a more permanent feature of the landscape.

Chisholm (1968) identifies two stages of economic development, which can perhaps also be recognised in the development of settlements in Roman Britain. At the simplest level there is the self-sufficient subsistence economy in which there is little investment or trade. The basic agricultural stratum of population is located according to the distribution of natural resources. At this level we might perhaps see the farmstead, hamlet or small village. With improvements in transport the region develops some trade and local specialisation, and a second stratum of population emerges, carrying on simple industries for the farmers. The agricultural population provides the materials, market and labour. At this point the village perhaps develops into an important local centre, a small town? The difficulty lies in recognising this transition in the archaeological record.

Rivet (1975, 113), discussing the classification of ‘small towns’, or minor towns as he would prefer to see them called, suggests that the term is applied specifically to those places which fall below the rank of city, but which are related to the Roman communication system. Small towns are seen as selected centres with imposed official roles and functions rather than centres that have simply developed an economic role. Native villages such as Chisenbury Warren on Salisbury Plain are thus excluded. It is widely acknowledged that neither size, nor the existence of defences is a sufficient criterion for defining a town (Todd 1970; Rivet 1975; Burnham and Wacher 1990). Rivet (1975, 112–13) highlights three functions likely to be performed by settlements
with the status of small town: the maintenance of communications, the collection of taxes, and local administration relating to pagi (small units within tribal territories). The establishment of forts, road-stations or tax collecting points may have attracted trade and settlement. Likewise the existence of centres for each pagus, chosen or approved by central government for local administrative purposes, may have attracted trade and population. Rivet considers it likely that each pagus had its own special god and temple, important features for identifying such centres. In conclusion, he identifies seven sources of settlement which might in some circumstances be the progenitors of a small or minor town: fort or fortlet, road-station (mansio or mutatio), religious centre, extractive industrial settlement, port, roadside village and late fortified post (burgus) (Rivet 1975, 113).

Burnham and Wacher (1990), in their recent review of a number of settlements which have, at some time or other, been called small towns, looked for differences, or similarities, between the sites which might contribute towards both a classification and an understanding of how such sites functioned. Despite the obvious problems inherent in the uneven and very piecemeal archaeological records available, a number of trends and common links were highlighted. In particular, the following themes were considered: origins and developments, internal morphology, special functions and economic functions. Six categories were defined as the framework in which to place the small towns being considered: potential cities, minor towns, specialised religious sites, specialised industrialised sites, minor defended settlements, and undefended settlements. More recently Burnham (1995, 10) has proposed a simpler threefold classification: upper-, middle- and lower-order settlements based on structural and functional indicators.

In addition to the small towns, villages, and hamlets, another facet of settlement increasingly receiving attention in the later Roman period is the villa. Such a site may be easily confused in terms of function and individual components with a small town. The definition of a villa is one that has been widely discussed (Rivet 1964, 99ff; 1969; Percival 1976). Most villas were economic units geared to providing goods and services for their own needs, and would have supported a small community. Is there a point at which a villa becomes the market place itself, thus fulfilling one of the roles attributed to a small town? A similar problem could exist with sites considered to have a religious role. At Uley, for example, the temple attracted a considerable number of associated buildings forming, to all intents and purposes, a small local centre, but clearly with a different raison d'être from the villa estate. Most settlements would undoubtedly have had one or more religious foci; the difficulty lies in disentangling those which are part and parcel of daily life, and those which formed the focus of the settlement creating perhaps one of Burnham and Wacher’s small towns with a specialist role.

The Cotswold Small Towns

One of the aims of this report is to look at possible Roman ‘small towns’ in the Gloucestershire Cotswolds, and for this purpose five potential candidates have been selected for detailed consideration: Kingscote, Wycomb, Dorn, Bourton-on-the-Water and Lower Slaughter. A sixth site, Coln St Aldwyns, is included in the coin review (cf Reece pp 400–21) but otherwise not considered in great detail. Each site will be assessed, in the light of current knowledge, to determine what characteristics it might show to warrant its classification as a ‘small-town’ or otherwise.

To assist in this review a gazetteer has been compiled for each site, bringing together various strands of evidence to provide a picture of the known archaeology, not only for each specific location, but for the immediate surrounding area. The evidence collated pertains only to the Roman period, and the periods immediately before (later Iron Age) and after (pagan Saxon). The sources used for the gazetteers include the Gloucestershire Sites and Monuments Record (SMR), the National Monuments Record (NMR), the RCHM (1976) volume on Iron Age and Romano-British Monuments in the Gloucestershire Cotswolds, including unpublished notes relating to work in compiling the volume, and unpublished information and artefacts from local museums and private individuals. Apart from Kingscote, no subsurface investigations have been carried out as part of this project although use has been made of recent observation work at Kingscote (Cotswold Archaeological Trust (CAT)) and excavation at Bourton-on-the-Water (Gloucestershire County Council (GCC); Catchpole forthcoming). At Kingscote a pilot geographical survey was carried out in three locations by the Ancient Monuments Laboratory (cf Cottrell and Payne pp 16–23). In addition, a programme of systematic field-walking was carried out on available ground at Kingscote by CAT during the autumn of 1994. A new topographic survey was carried out at Dorn by Mark Corney and David McOmish (RCHME) and the results of this combined with aerial photographic transcription from existing library photographs. Other aerial photographic transcriptions were made of both Wycomb and Kingscote by the RCHME.

The archaeological resource has been catalogued as sites. These are taken to be places where archaeological deposits, finds or other evidence have at some time been recorded through a particular event, or
recording action. In this sense sites may be regarded as 'sights' onto the archaeological record, the quality, nature and reliability of which varies considerably according to the skills, ability and experience of the observer. Each event is treated as a separate site, or item of recorded data. A list of the different categories of site used can be found in Appendix 1.

Sites are referred to in this report by a unique number for each locality. Two levels of approach have been used for each location: one at a more detailed level relating specifically to the extent of settlement as currently understood, and one slightly less detailed look at the wider area immediately beyond the settlement. In the detailed maps the sites begin with numbers 1, 2 and so on; in the area maps the sites begin with 1001, 1002 and so on. Each locality should thus have a minimum of three figures: one showing the location and extent of archaeological intervention for the detailed location with the site numbers; one showing the archaeological information derived from this intervention, ie the position of buildings, roads, finds etc, and one showing the known archaeology in the surrounding areas.

In the following report each settlement is discussed using the evidence compiled in the gazetteers (cross-referenced by the relevant site number S00). For Kingscote and Wycomb the sections include the relevant excavation reports. The individual discussions will address a number of different issues, in particular location; origin and development; morphology; specialist functions; industry; agricultural production; trade and commerce; and any administrative or governmental roles.

Taking each of these issues in turn, the following questions will be asked:

Location: Why are the settlements where they are? How do they fit into the known existing road network? What natural resources are there nearby? How close are neighbouring towns, villas or other settlements?

Origins and development: Is there any evidence of pre-Roman occupation? Is there any evidence for early or late military occupation? Is there continuity at the end of the Roman period? Is the site occupied continuously?

Morphology: Size and extent of occupation. Is there any evidence for organised planning? Is the site defended? Where are the cemeteries located? Are there any recognisable building types?

Specialist functions: Is there any evidence from the finds and buildings to suggest a specialist role such as a local religious or cultural centre?

Industry: Is there any evidence for the manufacture or processing of goods?

Agricultural production: Is there any evidence for crop growing, storage, processing? Is there any evidence for animal husbandry?

Trade and commerce: What evidence is there for trade from the finds? Is there evidence of mobile specialist artisans working in tile, mosaics, wall-painting, building techniques? What coinage is present from the site?

Administrative and governmental role: Are there any buildings or specialist finds to indicate a national governmental role?

The final chapter will provide a general discussion of ‘small towns’ in the Cotswolds, using the evidence revealed in the foregoing analysis to compare the individual sites with each other to establish which, if any, traits they might share and how they differ. The towns will then be compared with other settlement types, such as Cirencester and the numerous villas. How do they compare in terms of location, chronology, religion, industry and manufacture, agricultural production and trade?
PART A: KINGSCOTE

2. THE SITE

Location

The Romano-British settlement at Kingscote is located within the parish of Kingscote, approximately 1km south-west of the modern village and 18km WSW of Cirencester (Corinium Dobunnorum) (Fig 1). In the Domesday book, Kingscote is referred to as Chingescote, a small parish in the Hundred of Berkeley with a rating of 4.5 hides.

The Roman settlement, locally known as The Chessalls, is situated on what is today good, well-drained arable land on a relatively flat plateau, about 220m above sea-level, which drops away steeply on the west, south and east sides into deep valleys (Fig 2). Several springs issue from the valley sides from around the 210m contour, suggesting an adequate water supply nearby. No wells have been excavated or identified within the settlement itself to date. The ground is relatively free draining and, although currently fairly exposed, was probably more wooded in Roman times, providing fuel for heating and timber for building. The limestone bedrock provided an easily accessible source of building stone and roadstone.

The settlement at Kingscote has always been considered a little unusual in that it did not appear to be located on any of the known major Roman roads. Baddeley (1930a, 160 and facing fig) proposed a road from Chavenage Green, passing through Kingscote Park to emerge at the modern road near Hunter’s Hall, adjacent to Ashel Barn. He thought the road continued down to Stancombe Roman villa, west of Dursley, following a route locally known as the Whiteway (Baddeley 1930a; Margary 1967, route 543). Lindley (1953, 155) similarly noted an ancient trackway passing along the crest of the limestone ridge, from the fork at Chavenage Green, across Kingscote Park. He thought this route continued towards Stinchcombe Hill, just west of Dursley, and immediately north of Stancombe, heading towards a Severn crossing somewhere between Sharpness and Lydney. In the Chessalls area the road was apparently known as the Rudgeway and is named in early land grants to Kingswood Abbey (Lindley 1953, 156). Baddeley (1930a, 160) also identified a second route running from Chavenage Green down the scarp towards Frocester.

Subsequent aerial photographic work revealed two more or less parallel roads, or tracks, running into or through the settlement at Kingscote (RCHM 1976, 71), one from the west and another from the north-west. The most southerly of these two routes sectioned by Spry in 1971 revealed a partly paved, ditched road, 11m wide (Spry 1973). This is probably the road observed by Baddeley passing eastwards through Kingscote Park to Chavenage Green, and westwards towards Symond’s Hall Farm and beyond. More recent aerial photographic work has highlighted this route and its parallel northern counterpart, as well as identifying two further roads. North of the modern A4135, a road on NW-SE alignment appears to run from just north of Ashel Barn towards Owlpen (cf Fig 6). It may be heading for the Cotswold scarp and down towards Frocester and thence beyond to link with the known Roman road between Gloucester and Sea Mills (the modern A38). A length of metalling, possibly Roman, has been observed below the modern road north of Frocester Court villa (RCHM 1976, 56). The Iron Age fort and temple complex at Uley, to the north-west of Kingscote, do not lie directly on this route, but may well have had access via a spur road along the Cotswold scarp. To the south the Roman road probably follows the modern road down towards Westonbirt, and then to the Roman settlement at White Walls (Easton Grey) via Lasborough and Bowldown farm, both of which have produced Roman tombstones. Part of this route coincides with the Kingscote-Newington Bagpath parish boundary. Although the date of the north-west road cannot be ascertained at present, there are no traces of any earlier routes on this alignment on either the 1838 Tithe Award or the first edition OS map (sheet 68) (1830). A short stretch of a third road, on the western edge of the survey area (ST 9653 8050) and
passing north of Kingscote, is set on an E-W alignment and may be heading towards Dursley. A further possible roadway has also been identified from field-walking to the south of the settlement running in a north-south direction towards Newington Bagpath (Swain pers comm).

Kingscote is approximately 3km away from the recently excavated Iron Age, Roman and later temple
complex at Uley (Woodward and Leach 1993). Many stray finds have come from the general area, including pottery, coins and building debris hinting at a fairly intensive use of the landscape in the Roman period, probably through a network of dispersed farmsteads. Buildings are a possibility at Horsley (Sites S1023 and S1024), Lasborough (S1011) and Calcot Farm (S1019, S1020, S1038, S1040-2) (cf Fig 110). Slightly further afield, just beyond the Cotswold edge, are the villas at Frocester Court to the north-west and Wortley, near Wotton-Under-Edge, to the south-west.

The archaeological background

The Romano-British settlement covers an area known today as The Chessalls. The name 'Chesle' was associated with the site in 1772 (Camd. Britannia) (ed Gibson 1772) (S6). It also appears on the Tithe Map of 1838 (Gloucester Record Office 307 'Chisalls'). The name is frequently found in association with Roman sites and, derived from OE, is taken to mean a heap of stones, a large ruined fort or a building (A H Smith 1965, 237). The name of Kingscote, now a small village of medieval origin, may also relate to the Roman settlement if taken by its literal meaning 'homestead of the old rulers'. Alternatively, the name Kingscote, derived from Chingescote in the Domeday survey, has been suggested to mean King's Wood. On the first edition Ordnance Survey sheet (1830) the area is labelled 'Cold Harbour' (S19). The present fields occupied by part of the settlement are referred to today as 'Old Ley' and 'First Chessalls', but were formerly known as Lower and Middle Chessalls respectively (Fig 3). The field to the east of Old Ley, now known as Crow Hill, was originally split into Second Chessalls on the west side and Crow Hill to the east. Crook (1926, 47) names the fields Upper, Middle and Lower Chessalls from west to east.

In 1779 Rudder in his New History of Gloucestershire discusses legends of Roman occupation, then current local gossip in Kingscote village. Inhabitants had a tradition that there was once a city of the name of King's Chester, associating it with a Roman station at a place called 'The Chestles' (S11, 18).

The earliest recorded discovery from Kingscote, an enamelled brooch, dates from 1691, and was recorded in Magna Britannia Antiqua and Nova (1738) (S36). Reference was also made at this time to the Roman coins found in the fields after rain which were known as Chesle-money (Camd. 1772, 286) (S10). In the eighteenth century further discoveries were made, including a tessellated pavement, numerous coins and the head of a statue of Minerva (Rudder 1779, 512) (S12, S29). A stone coffin, now in Kingscote churchyard, was found in Middle Chessalls in 1872 (Willmore 1939, 140) (S22). At least three, possibly four, tombstones are known from the general area, one found in Horsley Wood and dedicated to Julia Ingenilla, who died aged 20 years, 5 months and 29 days (S1013); one to Metus, a Getan by tribe, 35 years, found about 5.5km away from Kingscote at Nesley Farm, Beverstone (S1016) and one inscribed 'D M Sulicena lived 14 years', found at Bowldown Farm before 1779 (Rudder 1779, 515) (S1015), nearly 6km away. Another tombstone is said to have been found at Nesley Farm but no description survives (Maclean 1887, 336) (S1017).

Two notable stone carvings are recorded from Kingscote parish. One, a semi-circular relief of oolite, had been built into the wall of Calcot Barn (ST 839949) by 1795 (S1047) (the original is now in the Ashmolean Museum; RIB 135). The relief probably depicts Mars on horseback, and has a dedication, IVLIVS L S (Julius willingly fulfilled (his vow)). The other piece, a slab depicting three Celtic mother-goddesses, is of uncertain provenance but may have come from either Symonds Hall Farm, or the Chessalls (S1036).

Morgan (1886) quoting Wright (1875) mentions that 'extensive buildings have been found ...which belonged to a villa or station' but provides no other details (S12). Few finds are recorded from the area throughout the nineteenth century, possibly owing to landownership and management; perhaps pasture, rather than arable use of the land. Roman pottery was found c 1890 near Kingscote Wood dating to the third/fourth century (S1046). Two further collections of coins were recovered from Kingscote/Horsley during the earlier part of this century (S1039, S1048). Of the 89 coins, 84 date to the third/fourth centuries and two are Dobunnic.

Correspondence dated 1952 from M Crook makes reference to possible excavations at the Chessalls site in 1926, but these cannot be corroborated by any other evidence. Finds of samian, black pottery and flue tile were also collected by Crook in 1925, from ploughed fields on the site of a 'villa', Newington Bagpath (S1, S21). It is unclear how these relate to the Kingscote site. Another uncorroborated comment is made by Baddeley (1930a, 151) reporting the frequent finding of funerary urns and Roman ritual remains (S13).

A Romano-British burial was found south of Kingscote Wood, as a result of a soil slip on a north-facing slope near the stream in 1955 (S1010). The remains comprised the lower part of an adult, possibly male, with an associated Polden Hill brooch (Clifford 1963).

Until recent times there had been no recorded archaeological investigations at Kingscote. Widespread occupation debris, including pottery, building fragments, coins and brooches, has continually been noted over the years, largely brought up by ploughing. Much of this was published in some detail by
Fig 3 Location map showing Kingscote Sites 1 and 2.
Fig 4 RCHME field-walking plan showing possible occupation spreads with later additions by KAA. (RCHME/KAA archive)
Eagles and Swan (1972) (S37) preparatory to the RCHME survey volume of the Gloucestershire Cotswolds (1976). The same phase of interest in the area led to additional aerial survey work and field-walking which resulted in some fairly detailed plots showing enclosures, tracks, linear ditches, small buildings, concentrations of building debris and distributions of finds. The work in 1971 identified at least 75 buildings and an axial road (Eagles and Swan 1972, 61) (Fig 4). A section measuring 1m wide by 17.2m long was excavated at right-angles to the road in 1971 (Spry 1973) (S15). A well-worn limestone surface was revealed, bordered on either side by a roadside ditch. The northernmost ditch contained abundant domestic rubbish, suggesting it was filled by the late third/early fourth century AD. The southern ditch, that furthest from the settlement, showed a broader, shallower profile and contained little datable material.

Subsequent field-walking by the Kingscote Archaeological Association (KAA) and various locals has augmented the RCHME’s work (S38–62). Much of the material from the former is deposited in Stroud Museum, whilst much of the latter resides with individual finders (see pp 23–5 for recent field-walking).

In 1973–5 excavations were carried out by the Kingscote Archaeological Association, an amateur group directed by E J (Ted) Swain, in the field immediately south of First Chessalls (=Field II) (S16). These were followed in 1975–80 by a second excavation at a site in First Chessalls (S17) (Fig 3). The results of this archaeological work are reported on below. The most recent archaeological intervention to be carried out was the digging of five 1m² test-pits for the relocation of electricity poles (Bateman 1994) (S20).

In addition to bringing to publication the results of the KAA excavations, a number of ancillary projects were carried out to augment the previous work at Kingscote. A detailed aerial photographic transcription and analysis was undertaken by the RCHME using photographs taken by Colin Pennycuick during the 1970s whilst the excavations were in progress (S9), along with library collections (S8). Geophysical survey, targeting areas both within and outside the settlement, was carried out by the Ancient Monuments Laboratory, English Heritage (S4–5). Use was also made of a particularly fine field-walking collection made over 20–30 years by Ted Swain. This was photographed, briefly catalogued and a small selection drawn (see Field-walking finds pp 206–16). Finally a new programme of systematic field-walking was carried out by the Cotswold Archaeological Trust, to assess the current condition of the site, and to try and examine in more detail the extent of the settlement from the distribution of any finds (S25).

THE DISCOVERY By Edward Swain

My interest in Kingscote was first aroused after a visit to Stroud Museum, when I discussed the Roman occupation of Gloucestershire with the then curator, Mr Lionel Walrond. I had been walking the Kingscote area the previous week and had found several coins and sherds of pottery. Mr Walrond confirmed that many small finds had turned up there and that in fact the RCHME had drawn a plan of the area, marking the suspected building spreads as shown after ploughing. One noticeable feature of this map was that certain fields had no signs of occupation marked on them, owing I believe to the land in question not having been ploughed when the initial field survey was carried out.

The evidence for a Romano-British settlement was convincing, I obtained a copy of the map and decided...
to carry out a thorough long-term investigation of all the fields within the area to fill in the gaps. The winter of 1971 fieldwork showed that the settled area was much more extensive than was previously thought. From surface finds it was possible to distinguish the earliest parts of the settlement dating from the early first century. Many early brooches and coins, including some Belgic ones, were discovered in the southerly end of field IV. Although the latter are found on Romano-British settlements, it is my opinion that pre-Roman Celtic occupation existed in this area.

During the next three years other enthusiasts joined me in my work and together we reached a point when an excavation was desirable to confirm the evidence so far collected. We decided we would like to excavate in field II (ST 8075 9572) (see Fig 3), an area approximately 16m by 10m in the corner of the field that could easily be fenced off without disrupting farming, and where there were signs that buildings were severely damaged by the plough. We approached Mr Godsell the landowner, and the other necessary authorities, for permission to excavate.

The site proved to be a good training ground for our group and we completed the work by the autumn of 1975, backfilling and leaving all walls and features undisturbed. We made many mistakes, but consider that under the circumstances we carried out a reasonably good job. We would like to thank Mr Walrond for his encouragement and help through those difficult early days.

We now considered that we were sufficiently experienced to embark on a more challenging venture, and after much discussion between Graham Walker and myself we approached Mr Gordon Nichols who then farmed the fields known as Middle Chessalls and field III for permission to excavate trial trenches in the Chessalls on an area we considered might have features preserved under the lynchets accumulated during ploughing (ST 8065 9608).

Work commenced on Saturday 20 September 1975 when we opened a trench approximately 0.5m by 2m at a point where we considered there was a wall. After the plough soil was removed the wall appeared, crossing the centre of our trench at right angles, and built into it was a hypocaust box flue tile.

Further excavation revealed a cement floor. Wall-plaster was collected from the debris and we came to the conclusion that we had discovered a significant building. It was decided to follow the wall in both directions and further work revealed another wall connecting at right angles. We had found the corner of a room and excitement spurred us on to excavate a box approximately 2.5m square in this corner. I had previously slipped my arm into the flue and discovered there was a void below. We speedily removed destruction material and came to an occupation layer before we had to retire for the day.

The following morning we were all back on site very anxious to continue. Several small bronze Constantinian coins were found and the layer proved to be a late minor occupation, probably post-abandonment, because the cement floor would have been kept reasonably clean during the hey-day of the building.

Under the occupation layer was a scattering of sandstone roof tiles lying flat on the floor and it was while clearing these that we exposed a large hole. My immediate reaction was to look within. I could see rows of dressed stone columns going in all directions (Fig 5), and I wondered how far they would go. I could not see. We had to get some light and a gas lamp was available. It was lowered into the hole and promptly went out, we later realised from lack of air. We agreed that we had found a hypocaust, probably in good condition, and we drove to the farm to borrow a torch. Graham Nichols came back with us, and in hand, he dropped into the hole and scurried away, his legs disappearing like those of a rabbit. We heard faint cries of ‘there’s bones here and pottery there’. We shouted at him not to touch and tried to work out how far he had gone. Graham called out that he could not breathe, so we told him to return. He described ‘passages’ which later proved to be flues, mentioned that he had travelled quite a distance in a westerly direction and that there were columns, hundreds of them. Although it appeared unsafe I had to go and look for myself and gingerly entered the abyss. It was fantastic. A cold shiver ran along my spine—we were probably the first people to enter this structure for 1500 years. There it was, just as the builders had left it, except for a few animal bones probably carried in by dogs or foxes while the flue was open, and a small quantity of broken pottery that had fallen in. The structure was unforgettable! It was now clear that a thorough investigation of the site was called for and a large-scale excavation had to be organised.

AERIAL PHOTOGRAPHIC TRANSCRIPTION AND ANALYSIS
By Fiona Small and Cathy Stoertz (RCHME)

Summary
An aerial photographic survey was made of the plough-levelled remains of the site of Kingscote Roman settlement, near Kingscote, Glos. All available aerial photographs of the survey area were examined in detail and photogrammetric plans were prepared at 1:2500 scale of all archaeological features visible in the form of plough-levelled cropmarks. The survey was able to identify a large number of new buildings and trackways, and the numerous sites of possible spreads of collapsed masonry (Fig 6), which corres-
Fig 6 Aerial photographic transcription of Kingscote (North to top). (© RCHME)
ponded to a previous ground survey carried out by the RCHME (Eagles and Swan 1972). The work was carried out between 10 May and 17 August 1993.

Objectives
The first objective was to provide an accurate survey of the settlement and surrounding area, interpreting and transcribing at 1:2500 scale all archaeological features visible on available aerial photographs. The final objective was to produce a detailed plan of the surviving features, and to show possible sites of collapsed building rubble and extent of the settlement as an aid to further fieldwork and excavations.

Photographic Sources Consulted
For the purposes of this survey all RCHME vertical and specialist air photographs were consulted, as was the private collection of Professor C Pennycuick. The Cambridge University Committee for Aerial Photography was also consulted but held no relevant photographs in their collections. A list of the vertical and oblique photographs consulted can be found in the Archive (Corinium Museum).

Generally, the photographs held by the RCHME were of very good quality, with good field boundary control included. However, some of the best archaeological information was contained in poorer oblique photographs damaged by exposure to light. The private collection was very wide ranging, although many of the most important photographs, uniquely showing several sites, were taken from such low angles and altitudes that adequate control was virtually impossible to obtain.

Survey methods and techniques
Because of the need for accuracy, plots for the various archaeological features were produced using computer-aided photogrammetric rectification from oblique and vertical air photographs. This was achieved through the use of the AERIAL 4.20 software published by the University of Bradford which uses plane transformation techniques offering metrical precision in the region of 0.3m at 1:2500 scale.

Field control was derived mainly from current edition OS 1:2500 plans: ST 8094-8194, 8095-8195, 8096-8196, 8097-8197. In addition, some control was also derived from earlier OS 6 inch maps (ST 89NW and ST 89SW) where there had been significant change in the field boundaries.

Where features were plotted from more than one photograph the correlation was, in nearly all cases, good, suggesting that these features were located within 2m of their true position on the ground. The residual errors recorded in rectification of the archaeological features were not greater than 2m, generally 0.1–1.0m. However, some of the plots to the west were less accurate, having been plotted from derived control points, owing to the poor quality of the photographs. In the course of the digital survey, 32 separate photogrammetric transcriptions were prepared. These plots and digital data files are held by the RCHME.

The archaeological interpretation of the site was hampered by the underlying geology of the area. This being a limestone region, and the buildings of the Roman settlement being constructed in limestone, there was very little or no differential between archaeology and geology, resulting in very poor cropmarks over the majority of the site.

An irregular stipple was used to depict all of the maculæ present as negative cropmarks which appear over the whole site. This was necessary because no distinction could be made between dark cropmarks which corresponded with recorded spreads of building debris and those of unknown origin. This was particularly so in the southern part of the site, where the cropmarks were such that in normal circumstances they would have been discounted, but in the light of the ground survey to the north they could not be ignored. Because of the size of the finished plans, and the number of fields containing archaeological features, it was considered necessary to include some simplified topographic information. This was plotted onto a second transparent overlay and reproduced on a combined plan with the archaeology printed in black and the topographic features in a light grey stipple.

Description of features transcribed (see Fig 6)
A (ST 810959): The cropmarks were not clear, but the outlines of three groups of buildings were visible. The whole site was covered by large negative maculae patches (shown as stipple on the plan) and a number of linear ditches. To the south a section of metalled road could be seen, its two ditches showing as negative cropmarks. The archaeological features are confused by the high degree of geological background noise in the form of fine cracking.

B (ST 808956): The cropmarks were faint and generally blurred, showing large areas of amorphous dark cropmarks (possibly building debris), linear features (possibly trackways), and the outline of part of one rectangular building.

In the SW part of the field was the very faint trace of a grid network. This may well prove to be non-archaeological, but was included for the purposes of the ground survey, being similar to the mark left by metalled streets between buildings. The southernmost of these linear features was seen to cross the whole width of the field.
Excavations at Kingscote and Wycomb, Gloucestershire

C (ST 808954): The northern part of the field was covered by amorphous maculae and a possible trackway with a T-junction in the NW corner. There were several straight linear features forming part of a large grid, possibly roadways. To the south were the remains of two buildings.

D (ST 806955): The archaeological features plotted include linear ditches forming part of an enclosure, various linear ditches and a number of large amorphous and rectilinear patches of dark cropmarks.

E (ST 808951): The cropmarks in this field were generally very faint. The whole area was covered with dark maculae of varying size and shape and of unknown origin. To the north was a square feature (possibly a building), and to the east an incomplete rectilinear ditched enclosure.

F (ST 803956): The features in this field consisted of eight small dark maculae, two of which were perfectly rectangular. Stretching north-south in the northern half of the field was a straight linear ditch thought to be part of a field boundary, possibly contemporary with the Roman settlement.

G (ST 806956): The features plotted include the foundations of part of a small building, several dark amorphous maculae, and a short section of possible track/roadway running N-S parallel to the grid to the east.

H (ST 808960): This site comprises the field known as Lower Chessalls, and the archaeological features included various patches of dark maculae of varying size and shape, and single and double linear ditches at 90 degrees forming an incomplete enclosure. In the southern half of the field there were the traces of at least five buildings. The latter features may have had higher than average residual errors, because of the poor photographic control on key photographs.

I (ST 806960): The archaeological features recorded include a large winged villa building and various adjacent buildings, were visible as cropmarks initially, but as an excavated site over subsequent years. To the south there were less distinct traces of further buildings. To the north of the main building there were two large maculae described on the NMR as sites of quarrying, possibly Roman, and linear ditches running to the west, thought to be a trackway. To the south of the main building there was another trackway with broad parallel ditches. Both these trackways have perpendicular straight ditches, thought to be field boundaries contemporary with these Roman trackways (see also ST 803956). To the west, at the rear of the villa building, there is a short length of straight ditch, possibly the compound boundary.

J (ST 806965): The archaeological features recorded comprise the traces of two buildings. The first (at ST 808964) shows as a large macula in one year, and in another year the foundations can be seen more clearly as cropmarks. The second feature is a large dark area very similar to the first, and is thought to be another building.

K (ST 8001966): The archaeological features plotted include four parallel ditches running E-W across the centre of the field, thought to be part of a trackway/road. There were also a number of amorphous maculae which were thought to be old tree bores, as they are situated at regular intervals along the edge of the modern road.

L (ST 810966): This site comprises a single linear ditched feature which runs NW-SE across three separate fields, broken in several places. There is a second parallel ditch visible only in a few places. The feature is thought to be a track/roadway. The northern portion is obscured in part by a change in crop type. In addition, there is one small dark cropmark of unknown date or function.

M (ST 818955): The archaeological features plotted include two complete buildings and traces of a possible third, positioned in a row in the north of the field, present as positive cropmarks.1 The westernmost building has an internal division to the south and the centre building appears to have a pit dug in the centre. To the SE, beside the road, is a cropmark of a short length of ditch with a 90 degrees angled bend. To the north, in the next field abutting the field boundary, is a broad ditch of irregular form (lobed semi-circle), of unknown date. To the SE, in the next field, is a cropmark of a single macula.

REPORT ON THE GEOPHYSICAL SURVEY

By Peter Cottrell and Andrew Payne

Introduction

A series of trial geophysical surveys at Kingscote were undertaken by the Ancient Monuments Laboratory (AML) during 1993 in support of the assessment of the Roman settlement. The main survey was focused over the site of the 1974-80 excavation (Site 2) to assess the potential for the future large scale geophysical exploration of the Kingscote settlement with a range of archaeological prospecting techniques and to investigate the relationship between the excavated building and further archaeological features partially known from aerial photography in its immediate environ-

1Field-walking in this particular area suggests that this is a medieval/post-medieval structure (Swain pers comm).
Method

The survey covered three distinct areas around the western, southern and northern limits of the known site (Fig 7). Magnetometer and resistivity surveys...
KINGSCOTE, GLOS, SITE 2 - MIDDLE CHESSALLS Magnetometer Survey, 1993

i) Greyscale plot of enhanced data.

ii) Traceplot of raw data.

Fig 8 Kingscote Site 2: magnetometer survey plot. (© English Heritage)
were carried out in Area A, while Areas B and C were
surveyed with the magnetometer only. Due to time
constraints a sampling strategy had to be adopted in
the latter two areas (comprising two separate 60m by
60m blocks in each area) to give as broad a coverage
as possible. Each survey was based on a grid of 30m
squares, measured into the field boundaries.

AREA A: MIDDLE CHESSALLS AREA (OS FIELDS 5500 AND 7600) (FIG 8)

A survey grid was set out over the field to cover the site of the excavation and the wider surroundings of the known Roman building complex in order to trace the continuation of previously recorded archaeological features. The survey grid was laid out on a different alignment to the excavated Roman features to avoid problems in anomaly resolution and data interpretation caused by archaeological features lying parallel to or in between instrument traverses. The whole survey grid was surveyed using magnetometry, and in addition a resistivity survey was carried out over a sub-section of the grid (shaded on the plan) coinciding with the main concentration of anomalous activity detected by the magnetometer.

The magnetometer survey was carried out with Geoscan FM36 fluxgate gradiometers carried along 30m traverses running approximately north-south, spaced 1m apart, and with reading intervals of 0.25m along each traverse. The shaded area of the grid (see Fig 8) was surveyed with a Geoscan RM15 resistivity meter using a Twin Electrode probe configuration, and a 0.5m mobile probe spacing. Readings were taken at 1m intervals along north-south traverses 30m long and 1m apart. Additionally topsoil samples were taken for the purposes of carrying out magnetic susceptibility measurements (MS) in the laboratory. A total of nine approximately 100g samples (numbered 01-09 on the location plan) were retrieved at 15m intervals along a traverse running east-west across the centre of the surveyed area (and crossing over the southern part of the excavated Roman building). The samples were dried and sieved through a 2.8mm mesh to remove large stones and other inclusions and then the standard low frequency, mass specific magnetic susceptibility of each sample was determined using a Bartington MS 1 magnetic susceptibility meter and laboratory bench sensor (calibrated for 100g samples).

(i) **Magnetometer survey** (Fig 8)

The greyscale plot of the data from Area A shows evidence of both negative and positive magnetic anomalies corresponding respectively to masonry and earth-filled features. The site of the 1974-80 excavation can be seen as a zone of intense magnetic disturbance in grid squares 2D, 3D, 2E and 3E. Within this disturbed area it is possible to see negative linear anomalies which appear to represent some of the in situ walls of the back-filled Roman building, apparently continuing northwards beyond the excavation. This response is very similar to results obtained from magnetometer survey over buried walls of Roman buildings at Wroxeter Roman City, Salop and over a Roman building at Croughton, Northants.

Two very clear positive and parallel linear anomalies are present running north-west to southeast along the survey to the south of the Roman buildings. These correspond with roadside ditches visible in part on aerial photographs (see Fig 6). Contrary to the AP transcription, there is no firm indication from the magnetometer data that they continue eastward beyond the line extending southwards from the villa building. Nevertheless, there is a slight positive linear anomaly visible between the ditches which does appear to continue and this may indicate a hollowed out, or even robbed roadway. Immediately to the south of the road, and aligned

(ii) **Magnetic susceptibility**: Topsoil samples were taken for MS measurement using the procedure described above at 30m intervals along east-west traverses across each field. The magnetic susceptibility data is presented as bar charts with the data from Area A for comparison on Fig 10.

The magnetometer data from Areas A-C is presented in the form of trace-plots of the raw data after preliminary removal of the effects of thermal instrument drift (by equalising the mean of each line of readings) and a greytone image of the equivalent data after treatment with a 1.0m radius Gaussian low-pass filter (Scollar 1990) to reduce superficial noise in the data (see Fig 8).

The raw resistivity data from Area A is presented in Fig 9a and 9b. In addition, in order to improve the visibility of archaeologically significant anomalies, the initial data was enhanced using a 3m radius Gaussian high-pass filter (Scollar 1990) to remove broad (natural background) trends and highlight anomalies less than 3m in width (Fig 9c). Directional filtering was also employed to emphasise anomalies aligned on the main north-south axis of the excavated buildings (Fig 9d).

Results

AREA A

(i) **Magnetometer survey** (Fig 8)

The greyscale plot of the data from Area A shows evidence of both negative and positive magnetic anomalies corresponding respectively to masonry and earth-filled features. The site of the 1974-80 excavation can be seen as a zone of intense magnetic disturbance in grid squares 2D, 3D, 2E and 3E. Within this disturbed area it is possible to see negative linear anomalies which appear to represent some of the in situ walls of the back-filled Roman building, apparently continuing northwards beyond the excavation. This response is very similar to results obtained from magnetometer survey over buried walls of Roman buildings at Wroxeter Roman City, Salop and over a Roman building at Croughton, Northants.

Two very clear positive and parallel linear anomalies are present running north-west to southeast across the survey to the south of the Roman buildings. These correspond with roadside ditches visible in part on aerial photographs (see Fig 6). Contrary to the AP transcription, there is no firm indication from the magnetometer data that they continue eastward beyond a line extending southwards from the villa building. Nevertheless, there is a slight positive linear anomaly visible between the ditches which does appear to continue and this may indicate a hollowed out, or even robbed roadway. Immediately to the south of the road, and aligned
Fig 9 Kingscote Site 2: resistivity survey plots. (© English Heritage)
on it, is a rectangular enclosure defined by ditches detected as positive magnetic anomalies (squares 1H and 2H).

Adjacent to the road and to the west of the building complex, there are several wide positive anomalies, many of a roughly oval shape, which may well represent quarries such as those found dating from the mid second-century beneath the excavated Roman building (see pp 35–8).

(ii) Resistivity survey (Fig 9)
Despite the backfill from the excavation, the resistivity survey has located several of the walls of the Roman building as high resistance anomalies; this is particularly clear in the enhanced greyscale plots (c) and (d) which also suggest activity to the immediate south and west of the building. In square 2D a linear high resistance anomaly parallel to the length of the building could well be an enclosure wall to the complex. This feature corresponds to a rather subtle negative linear anomaly which can be seen in the enhanced magnetometer plot (Fig 8.1), between squares 1F and 2F, running parallel to the long axis of the building.

The roadway has again been located as a linear high resistance anomaly, corresponding to its position in the magnetometer survey. The data also suggest that the roadway continues eastward beyond the building complex. It is notable that this continuation is as a single linear anomaly rather than the apparent double anomalies to the west.

The ‘quarry’ features located by the magnetometer appear in the resistivity data as low resistance anomalies. The resistivity survey has also responded to a series of linear low resistance features that crisscross squares 1G, 2G, 1H, and 2H, and a long, diagonal, feature running from square 2F to 3H. These do not show up in the magnetometer data and this, coupled with their irregular alignment, makes their association with the other Roman features uncertain. They could perhaps relate to cultivation of another period or to geological formations.

AREA C (Fig 7)
MAGNETOMETER SURVEY
Two strong linear anomalies, one running east-west along the southern edge of both survey grids and the other crossing squares 01 and 03 at an angle were identified in Area C. These relate to modern metallic pipes or services and their strong magnetic effects obscures any other anomalies in the immediate vicinity. Other scattered small positive anomalies in the area might indicate the presence of some limited archaeological activity (perhaps in the form of pits). But because the field is close to modern habitation these are more likely to be a response to buried bits of iron litter that have worked their way into the soil. A series of faint positive and negative parallel linear anomalies trending across the survey area in a south-west to north-east direction are probably a response to former ploughing, although the field was pasture at the time of the survey.

MAGNETIC SUSCEPTIBILITY (MS) MEASUREMENTS
The results of the MS measurements are shown as a series of bar charts for each area (Fig 10). Each bar on the chart relates to a sampling point shown on the location plan for each survey area. The readings obtained from Area A show a gradual fall-off of susceptibility to the west of the building complex which corresponds with an absence of magnetic anomalies seen in the magnetometer data (Fig 8). There is a clear difference in the average MS of the three sample groups. Although other extraneous factors, such as the superficial geology under each area and the different landuse that each area has undergone, may affect the local susceptibility, it is likely that enhancement due to archaeology has caused the higher readings in Area A. Conversely, the probability of archaeological enhancement of the soil MS in Areas B and C is correspondingly lower.

Conclusions
The trial work has shown that both magnetometry and resistivity are suitable for the detection of a wide range of buried archaeological features contained within the Kingscote settlement. Resistivity and magnetometry provide complementary data, and the use of both methods therefore enhances the reliability of the overall interpretation. Buried wall foundations were detected clearly as both high resistance and negative magnetic anomalies, whilst infilled features such as ditches and quarries were also clearly resolved by both techniques as positive magnetic anomalies and low resistance. The clear anomalies produced by a range of different features in both data-sets suggests that conditions at Kingscote are close to ideal for geophysical survey and could be
Excavations at Kingscote and Wycomb, Gloucestershire

Fig 10 Kingscote Site 2: magnetic susceptibility results.
© English Heritage

Area A
Topsoil samples E-W across survey

Area B
Topsoil samples E-W across survey

Area C
Topsoil samples E-W across survey

Mean = 155
Mean = 55.4
Mean = 84.2
FIELD-WALKING
By Jane R Timby

The existence of Roman remains at Kingscote has prompted a number of individuals to visit and walk the area throughout this century. Widespread occupation debris has been recorded over the fields, particularly since 1966, and finds are located at a number of museums (Gloucester, Cirencester, Stroud and Liverpool) (Eagles and Swan 1972, 60). A number of private collections are also known to exist, probably one of the most extensive being that made by Ted Swain, the original excavator of the site. It was his interest in the area and field collecting over the years which helped confirm the extent and quality of the settlement area (RCHM 1976, 72ff). Part of the Swain collection has been deposited in Stroud Museum (coins, metalwork, pottery), while a substantial and complementary selection remains in his private possession. This collection, comprising 521 objects and 850 coins was kindly loaned for the purposes of basic cataloguing and a photographic record (see pp 400ff (coins); pp 206-16, catalogue of Roman objects; pp 113-49, Mackreth for brooches). The field-walking was carried out on an informal basis with no grid or measurement imposed on the recovery of the finds. A number of the finds can be assigned to a specific field and most fall within the overall known extent of the settlement.

In addition to the field-walking carried out by Swain and others, further surface collections were made by the RCHME during the late sixties/early seventies, while preparing their volume on Iron Age and Romano-British Monuments in the Gloucestershire Cotswolds. The results of this survey were also published separately (Eagles and Swan 1972). This work allowed the RCHME to prepare a map of the fields showing the extent of the settlement from the incidence of spreads of 'building' debris and the distribution of finds; the sites of at least 75 buildings were identified on the ground (RCHM 1976, Kingscote (1)). This plan has been augmented by additional observations made by the Kingscote Archaeological Association between 1972 and 1977 (Fig 4). The additional work served to reinforce that carried out by the RCHME which now effectively falls within the area designated as a Scheduled Ancient Monument (SAM Glos 467).

Some twenty-five years have elapsed since the RCHME’s work at Kingscote, since when there has been no systematic recording work to determine whether the ongoing agricultural activity is actively disturbing the underlying archaeology. In 1994 Cotswold Archaeological Trust was commissioned by English Heritage to carry out a programme of systematic field-walking over the scheduled area and beyond to assess the current situation.

FIELD-WALKING IN 1994
By Clifford Bateman

Introduction
A field-walking survey was undertaken during the late summer/early autumn of 1994 within and around the scheduled area. The principal aims of the work were to ascertain the quantity and quality of any artefactual, or other, material on the field surfaces, to look at the distribution of any such material to assess the boundaries of activity, to look for any chronological patterning within the site and to look for any functional patterning across the site, for example concentrations of slag and industrial debris.

Methodology
The results of the recent aerial photographic transcription (cf Fig 6) suggest that the settlement may have been considerably greater in extent than the area currently scheduled. As a consequence, the field-walking programme was targeted to consider this larger area, amounting to some 119ha. The fields were systematically walked using a 20mx20m grid aligned relative to the national grid. All artefactual classes of non-natural origin, or clearly imported into the area, were collected. Field conditions varied greatly, with the best conditions in Fields 1, 2 and 3 (Fig 11) which had weathered over recent ploughing. The other fields, although ploughed, had also been rolled and this, combined with dry weather, made conditions less than favourable for data retrieval.

Results
The artefact classes recovered consisted of pottery (Roman, post-medieval/modern), ceramic and stone building materials (predominantly modern), industrial waste products (slag and flint), glass (Roman and
Excavations at Kingscote and Wycomb, Gloucestershire

A.

Key to Roman small-finds

- Glass (1 piece)
- Coin
- Lead (1 piece)
- Copper (1 piece)
- Tessera (1 piece)
- Tesserae (2 pieces)

Key to Roman pottery and slag

- 1 piece
- 2-5 pieces
- 6-10 pieces
- 11-15 pieces
- 16-20 pieces
- 20+ pieces

0 1000m

Fig 11 Kingscote Site 2: plot of field-walking finds 1994. (Cotswold Archaeological Trust)
The Site

modern), coins (Roman and later), iron, lead, slate and flint.

A particularly large assemblage of flint was recovered, amounting to some 700 pieces, mainly from Fields 2, 4 and 5 which contained both tools/implements, knapping waste and burnt flint. This complements material already noted from the area dating from the Neolithic and Bronze Age periods.

Artefacts of Roman origin were recovered across the area walked although the largest concentration of all the artefact classes came from within the core of the scheduled area, and in particular from the area of the 1975-80 excavations (Kingscote Site 2). Pottery was the most abundant Roman artefact recovered, totalling some 591 sherds. Most of the material was in fairly abraded condition commensurate with sherds that have been in a ploughsoil environment for some time. The fabrics reflect those from the excavation assemblages and date from the second to fourth centuries.

Four main concentrations of pottery could be detected (Fig 11B). In the core area concentrations were noted in Field 1 on the periphery of the earlier excavations and in Field 3. The two spreads in Field 3 appear unrelated to any cropmarks or known building debris spreads visible from the recent aerial transcription work (cf Fig 6). One concentration situated on the northern edge of the dry valley coincides with a concentration of iron slag. Several finds along with some possible building debris spreads were recorded from this general area by the RCHME (1976, Kingscote (1)). The incidence of pottery from the remaining fields (2, 4–5, 7–9) is low.

The distribution of industrial waste products is dominated by the large concentration of slag in the south-west corner of Field 3 (Fig 11C). A second concentration of slag was found to the south of the Site 2 excavation in Field 1 which could perhaps be associated with the compound visible on the geophysical plot (Fig 8). Both concentrations are suggestive of metal-working in the immediate localities. A light scatter of slag was present across Fields 1 and 2 which may simply be attributable to field manuring or general domestic waste.

The low numbers of other Roman artefact classes recovered preclude any consideration of spatial distribution. These include tesserae, coins and glass (Fig 11A), again mostly from Fields 1 and 2. A large quantity of broken ceramic tile was recovered from most of the fields and included material of Roman and post-Roman date.

In conclusion the recent programme of field-walking suggests that there is little new material being disturbed from any archaeological features below the ploughsoil, although it should be noted that conditions were not ideal when the work was carried out. The most common chronologically distinctive artefact class recovered was Roman pottery, which was found in all but three fields. The concentration of slag to the south and south-east of the excavated building strongly suggests that metal-working was carried out in the close vicinity. The distribution of material found also serves to reinforce the current understanding of the extent of the settlement reflected by the boundaries of the scheduled area. Few artefacts were found beyond these limits.
3. THE EXCAVATIONS: SITE 1, 1973–1975

Introduction

Kingscote Archaeological Association (KAA) was established in 1973, under the direction of Ted Swain, to undertake archaeological excavation in the Kingscote area. The first site (Site 1) to be investigated comprised two building scatters identified from surface collection of material. Three seasons of work were carried out and the site backfilled in 1975. In the same year a second site (Site 2) was opened up to the north, in the adjacent field known as First Chessalls (ST 8075 9572). This area continued to be systematically examined between 1975 and 1980. The site records from Site 1 are minimal and complete artefact retrieval was not carried out. In the following report the two excavations are described separately as Site 1 and Site 2. A catalogue of finds is presented for both sites.

Kingscote Site 1 is located in the north-eastern part of the field (referred to as Field 2), immediately south of the field known as Lower Chessalls (also known as Old Ley) (SP 8075 9576) (Fig 3). The site lies on a small plateau at a height of 220m above sea-level. A trench, measuring approximately 16m by 10m, was excavated by hand using a grid system comprising 10ft (3m) squares separated by 3ft (0.9m) baulks. On completion of the first area a machine was used to strip the surrounding ground revealing the presence of a second building and quarries.

The recording system comprised 14 context numbers which relate to quarry fills and other surfaces. The topsoil was labelled context (1). The excavations revealed the presence of at least two buildings (Buildings 1 and 2) and a stone quarry below a thin topsoil/ploughsoil. Plough damage...
Fig 13 Kingscote Site 1: Building 1. Scale 1:150.
was considerable and parts of the site had been completely destroyed. Although extensive finds of animal bone, pottery and small-finds were noted as present, only a small collection of pottery along with the bulk of the identifiable small-finds (bone, metal and stone) were retained. No overall plan of the excavations survives to show the detailed relationship of the features uncovered apart from that shown in Fig 3, which suggests two buildings set tangentially to one another. Separate plans were made of the two buildings with two sections, one through a quarry underlying Building 2, the other through the west end of Building 1. A summary of the findings was made by Swain on which much of the following is based.

The quarry

The earliest evidence of activity on the site was a small stone quarry. Located under the west wall of Building 2 (see Fig 12), the quarry was approximately 3.3m deep and measured 2.2m by 2.4m. It was excavated in two halves (referred to as Pit 1 and Pit 2 when dug), either side of the foundations of a later stone wall cut through the deposits. The fill comprised a series of burnt horizons. On one side of the inserted wall the lowest layers were labelled (10), corresponding with layer (13) on the opposite side. These were overlain by layers (9) and (12) respectively. The uppermost horizon comprised stone rubble presumably to level the surface prior to building work. Two halves of a melon bead (no 59) were recovered either side of the later wall indicating contemporaneity of fill. The quarry contained abundant general household rubbish including considerable quantities of animal bone, metal finds and pottery. Finds were recorded by depth in inches.

The buildings

BUILDING 1 (Fig 13)

Building 1 appears to be the earlier of the two structures excavated. A single overall plan was produced of what was clearly a fairly long-lived structure. Lack of detailed records makes it impossible to reconstruct a detailed history of use, or sequence for the internal features. Context numbers relating to Building 1 include (2), a thin black layer immediately below the topsoil (1), below which is (3), a rubble layer, both of which presumably relate to the abandonment horizon. Below (3) is layer (4), a thin layer resting on natural presumably relating to the use of the building, and (5), an area of clay immediately east of the oven. A section (Fig 13b) across the west end of the structure suggests a fairly pronounced lynchet over the north wall.

The building appears to have consisted of three drystone walls built on the north-east, south-west and north-west sides, with an open front to the southeast. The exterior corners of the walls were rounded and the foundations consisted of an extra-wide stone resting directly on the natural bedrock. Only the footings were left, with the exception of the northwest corner where a lynchet had preserved five courses of stone up to a height of 0.6m. There was extensive plough damage at the south-east end. The north wall appears to have a blocked-up doorway along its length. Internally the building, as defined by the three walls, measured 7m by 10.3m. The north wall appears to continue to the east with a slightly narrower build. The relationship between the two walls was not ascertained. South, and roughly parallel to this wall, was a line of five stone-packed postholes set 2.1 to 2.7m away from the stone wall. The area beyond to the south comprised coarse stone cobbles.

The internal features included a central stone hearth replaced by a later tiled hearth. The stone
The hearth was composed of a surround 13mm by 15mm of oolitic limestone blocks infilled with red tile and sandstone. Against the north wall was a well-preserved circular oven 0.6m diameter with a rectangular flue box measuring 1.06m by 1.2m (Fig 14). The oven was set three courses into the ground with a solid slab of rock as the base. It showed considerable evidence of burning. Other features included small pits/postholes and a possible robbed out second oven/furnace. Just beyond the enclosed area was a raised, cobbled stone hemispherical platform standing approximately 0.1m above the adjacent surface. The platform was faced with worn upright stones with traces of paving across the top. A pair of shoes had been left near the oven, one showing a complete imprint of hobnails (Figs 15, 58), the other having been folded over.

The floor of the building was overlain by a black accumulation of soil (4) containing coins of Gallienus (AD 253–68) and Constantine (AD 307–37), and fourth century pottery. A small hoard of coins was found in the north-west corner below a red sandstone tile. A second small coin hoard (Hoard S), comprising 26 coins, was recovered from under cobbling at the east end. The main group minted between AD 318–24 were probably deposited c AD 330–5 (cf Reece p 91).

Evidence for metal-working is indicated by the presence of offcuts of copper-alloy sheet and other miscellaneous scrap, and some globules of casting residue associated with layer (4). Further evidence of industrial activity was indicated by fragments of lead sheet and lead casting waste. It is unclear from the records how this material related to the ovens and hearths within the building.

Several small-finds were also recovered, including a number of iron tools, for example saw blades, knives and an awl. Other iron items included part of an iron lamp, bucket mounts and two snaffle bits. Of